

Dimensional
Symbols

Arrow of
Direction

This pattern
shows an arrow
achieving stablity
in the direction
the arrow points

Laws of fluid
dynamics make
this universally
true (gases and
liquids are both
fluids)

This also helps
establish top to
bottom as the
direction of
reading

Hexadecimal
Numbers

Subset /
Superset
Symbols

Time / Entropy symbols

Defined via common universal examples
of time progessing and etropy increasing

Dimensions
as subsets
of greater
dimensions

Orbital movement occurs on many levels
Movement arrow defines orbital direction
Orbital progression implies time steps

Particle decay into waves and particle
cluster dispersion both imply time and
entropy both progress

Wave elongating (redshifting) implies both
time and enegy progression

Eleastic collision implies time progression

Reading direction is top → bottom, so we will standardize everything flows/increases top →
bottom. Time, value, even the binary numbers will use this single standard.

There is no reason why top/up must mean increasing value, that is just cultural convention in charts.

We effective use 2 conflicting standards top→ bottom for reading (first line, second line, third line
increase downwards) and bottom → top for data and charts. These are arbitrary.

Some people instinctively count things in their visual space upwards, others downwards.
There are “arguments” for either way, but none are related to any universal law or logic.

The best argument I have ever heard is :
“if you make a Cartesian map and label values increasing upwards, then each step forward

represents an increase in value upwards on the map and you are oriented correctly (left right in life
are left right on the map).”

This argument is still arbitrary for 2 reasons
1. Each step could also be seen as -1 instead
2. It only works “Map North/Up”, if you walk “south/down” then it fails.

In writing everything flows downwards, this is also arbitrary, but it has a good reasons:
1. High up things can be seen from further so the most important information should be at the

top. Eg. if you have several labels or flags the most important should be highest up so it can
be seen from furthest away and be less likely to be blocked.

2. If you are human, with human arm and hand joints, using wet ink or
charcoal/lead/graphite/etc.., after you write a line of text you must move downwards,
otherwise you wrist and arm could smudge the still wet ink.

Universally, it is all arbitrary, so we choose increase/flow top → bottom for everything
You could rotate the page 180 degrees, and read bottom→ top, right → left if you like.

1 ? 1 =1 2 ? 3 =6

Multiplication symbol

5 ? 3 =2 4 ? 1 =3

8 ? 2 =4 9 ? 3 =3

Division symbol

Subtraction symbol

All "wave"
symbols are
equivelant

Number symbols

Variable symbols

1 ? 1 =2 2 ? 3 =5

Addition symbol

Hexadecimal places and radix point

F + 1 =10 21 - D =14 11 / 8 = 2.2

0010
= 00010
= 000010

10010
= 0001 0010

100010
= 0010 0010

0001 . 1000
= 0001.1000

Number symbol merging / extension

Line terminals,
corners, &
intersections
are all binary
digits

1
0

0001.1000

The "="
symbol
must also be
decoded.

I think this
is enough
examples to
ensure it is
universally
obvious,
if you disagree
just add more
examples.

Numbers are hexadecimal, each symbol is a pictograph of a 4 bit binary number. Values are defined
above, the binary construction is easily noticed.

Here we also demonstrate to the reader that the binary form can be extended beyond base 16.
Number symbols must contain at least 4 bits, otherwise they become too ambiguous with other
symbols(eg 1D, 2D,Time/Entropy).

The number/variable symbols are grouped into categories so we can refer to “numbers” and
“variables” later.

Variable usage is defined below, so at this point the reader will not know what they are yet, except
that they are created by combining the wave symbol with a number symbol.

(3+a=8) = (a=8-3) = (a=5) (2*3) / (10/5) = 6/2 = 3

Variables and Brackets basic

Exponents, Logs, & Roots

2 ? 3=8 8 ? 3=2 8 ? 2=3 a^0=1 8 = 4√1.8 3^2=9

1+1=2 1 1 2
1 1

2

x y=z

a

b
c

a=b^c

x y=z x
y

z=x^y

x y=z

z=log (x)

x

y
y

√ z=
y
x

x

1 1 2
3-1=2 3 1 2

3

1
23 1 2 2*3=6

2 3 6 2 3

2
3

6

2 3 6 8/2=4 8 2 4 4
2

4

88 2 4

*extra sections in red added to explain visual reasoning for symbol design
 not needed for definition, just help explain why symbols are intuitive

y

Symbol structure for scientific notation
Arrow attached to a number symbol on either side

This line only establishes symbol structure, definition in next lines

a 1=a*(10^1) a B=a*(10^B) 5.9 4=59000

Scientific notation defined

a 1=a/(10^1) a 5=a/(10^5) 67C2 3=6.7C2

Fraction symbols defined

1/2=½=½=½=½ 1/3=⅓=⅓=⅓ 2/3=⅔=⅔=⅔

1/15 7/9 4/8=4/8=1/2=0.8 1/4 3=400

1
0

0001 0100 0111 10000 0010 1001 1101 10000 1111

1 4 7 10 2 9 D 10 F

As with all number symbols
if all values are on one level
then they are all 1's

all 0's would just be 0

1
0

0001/0010 01 /0010 1/0010 1/10

½ ½ ½ ½
1/0011 1/11 1/100

⅓ ⅓ ¼
= zero / FALSE / space

= TRUE / particle

The space/particle meanings are defined
in previous and later sections

In logic gates we only use the TRUE / FALSE meaning

Input 1

Input 2

TRUE

FALSE

T
R
U
E

F
A
L
S
E

AND XOR OR NAND !XOR !in1 OR in2 in1

T&T=T F&T=F T&F=F

*T=true F=false &=AND |=OR ^=XOR !=invert/not

F&F=F T^F=T T^T=F !(T|F)=F !(F|F)=F T|F=T

(in2 optional)

1
0

0001

1

Uscript numbers use a binary representation
system with 0/FALSE on top and 1/TRUE below

Values increase downwards for all other
representaions as well

The invert / negative symbol
shows that pattern reversed

True/value above zero/space

*The symbolism does not need to be known, meaning defined below

!T=F !F=T 0-1=-1 3-9=-6 -3-4=-7 3-(-4)=7 -3-(-4)=1

*invert represented here using !(exclamation mark)

2*-4=-8 -2*-2=4 -6/2=-3 6/-2=-3 -6/-2=3

-2^3=-2*-2*-2=-8 -2^2=4

(a^-b)=(1/(a^b))

-b
√ a()=(1/))b

√ a(

r=real number i=imaginary number

r1=1 -r1=-1 2
√ 1=r1 2

√ -1=i1

3
√ -9=-3 2

√ -16=i4 i2^4=16 --1=1

abs(a)= (a^2)2

This symbol is defined as a
formula which returns the
absolute value of a number

Above you see the various elements defined so far in a sequence
separated by the time progression symbol. This shows the
order of operations, akin to the BEDMAS sequence.

1 / 16 * 4 - 2 = ((1 / 16) * 4) - 2 = (1/16 * 4) - 2 = ½ - 2 = -3/2 = -1.8 = -1.8

An example showing operation sequence and various other defined structures.
How many examples are "enough" is a matter of debate.

We can add as many examples as we like, but I feel there is already enough
to be decoded easily, if you disagree just add more examples.

Evaluation Bracket

eval(1)=T

eval(2)=F

eval(2)=T

eval(⅓)=T

eval(-1)=T

eval(1==1)=T

eval(1==0)=F

eval(0==0)=T

The evaluation bracket reduces anything to a True or False value.
It is a bracket with a particle dot, representing that it reduces to a particle
Any value except 0 is True
It turns statements into comparisons
 eg. equals statement (=) turns into a comparison (==)

! eval(a)=!eval(a)

!eval(a)=F

!eval(0)=T

a*True=a

a*False=0

eval(a=b)=!eval(a!=b)

Inverted Evaluation Bracket
Works the same as Evaluation
Just returns the opposite value

Not-Equals Symbol
Works the same as Equals
Just returns opposite value

Multiplication of X by TRUE is X, and by FALSE is 0
 eg "x = a + (b * eval(should I add b to a?))"

Absolute equals / magnitude equals
Same as "=" except positive and negative values are considered the same value

(a abs= b) = (abs(a) = abs(b))

eval(3 abs= 3)=T

eval(-3 abs= 3)=T

eval(3 abs= -3)=T

eval(4 abs= 3)=F

> Greater than Less than <

(a>b)=(1/2 * ((a-b) + abs(a-b))) (a<b)=(1/2 * ((b-a) + abs(b-a)))

These >,< don't just return True or False, if True they return the absolute difference in value
Since zero is False and any value is True, this can be used as a comparator

1>1=0 2>1=1 4.5>3=1.5 1>2=0 -1>1=0 1>-1=2

"is greater than" "is less than"

(a is> b)=(eval(a>b)=T)

((a)is_sub_of b range c)=((a is> (b-c)) & (a is< (b+c))))

Range

"is greater/less than" can create statements and definitions
Range allows tolerance on values

≈ approximately equal to

(a≈1)=((a)is_sub_of 1 range 0.8)

(a≈1.2)=((a)is_sub_of 1.2 range 0.08)

2
√ 2≈1.6A

"approx equal to" is defined as a rounded number

(a≈2*10^3)=(a=(2*10^3) range (0.8*10^3))

2
√ 2≈1.6A0A

⅓≈0.5

⅔≈0.AB

Default Operation : Multiplication

Fraction sub(½ ⅓ ¼ ⅔)

Fraction Variable
= Fraction * Variable

Fraction Number
= Fraction * Number

Fraction Fraction
= Fraction * Fraction

Variable Variable
= Variable * Variable

¼½10=¼*½*10=2 ¼½ / 10=¼*(½ / 10)=2*10^-2 ab=a*b

Here we also create a symbol for fraction, so we now have

fraction

variable real number

imaginary number

Rectangle / Cuboid space

Rectangle area
=rect x * rect y

cuboid volume
=cub x * cub y * cub z

perimeter of rectangle
=2xy

surface of cuboid
=2(xy+xz+yz)

The perimeter of a rectangle is defined as "1D line sub(rectangle)"
or "1D line contains 2D rectangle".

The surface of a cuboid is defined as "2D space that contains the 3D cuboid"

The equations define these terms, they don't need to be inferred from the symbols

We don't do it in reverse (eg. surface is the 2D sub of 3D) because higher
dimensions can contain infinite sub-spaces, a term used later

π≈3.243F7 e≈2.B7E15 r+r=D C=πD circle A=πrr

The symbol for "circle area" contains a second circle inside, this is because this
represents a "perfect circle" and without it is just "general area/2D space"

This distinction will be come later, we don't need to define it yet.
For now we just need to use the same symbol we use later for "perfect circle"

Circles, π, & e

Spheres & Triangles

Sphere volume
=3/4 π r r r

Sphere Surface
=4 π r r

triangle
∠a +∠b +∠c=180°

right triangle
∠a +∠b=90°

We have reused the circumference symbol
in the context of circles it is circumference, in the context of triangle or angles it is 360°

If you really don't like this and want to avoid ambiguity
you can use the same structure as perimeter for circumference "1D line contains 2D circle"

Basic Trig

A category symbol for "angle" |a |a+|b |b=|c |c
(a^2+b^2=c^2)

sin(∠a) = |b / h cos(∠a) = |a / h tan(∠a) = |b / |a

Sum() & Count()

sum(a,b,c,d) = a+b+c+d

count(a,b,c,d) = 1+1+1+1=4

sum(1,2,9,6) = 12

count(1,9)=2

Here we introduce the structure for arrays
Arrays are encapsulated in normal brackets
Array element brackets are rotated 90 degrees.

Array Variables, Cases & Average

(a=(3,5,C)) sub(sum(a)=14 count(a)=3)

above you see a "case"
in brackets we define the case (a variable contains an array)
in a sub of the brackets we can discuss the case

sum(a)/count(a) = average(a)

Array Math

(a=(1,9,2)) sub(a^2 = (1^2 , 9^2 , 2^2) = (1,51,4)

Here we define that using math operations on an array will apply
that operation to all the elements of the array

Standard deviation

σ(a)= (avg(a^2) - (avg(a)^2))
2

σ(sigma) represents standard deviation
This is not the standard format for the standard deviation formula,
but it is equivalent and works just as well

Array element reference

(a=(6,5,C)) = ()a[1]=6
a[2]=5
a[3]=C

a=(6,5,C)
b=a[1]+a[2]()sub(b=B)

This establishes a format for assign and reference array elements individually.
The "array element"([] square bracket) is a closed box "sub" symbol

Value assignment & Conditionals

a=1
b=2 () sub

a=2
b=2 ()
a=1
b=1 ()(a b)sub

(a b)sub () ()
assign value

We are mixing math and programming notation so
the = symbols is overloaded. Here we create a new
symbol to distinguish usage types.

(if(1){a=2}) = (a=2) (if(0){a=2}) = ()

(if(0){}else{a=2}) = (a=2)

(if(a){b}) = (if-not(a){}else{b})

(a=1 if(0){a 2}) = (a=1)

Is the condition True?

If YES do this

Is the condition False?

If YES do this

If NO do this

Is the condition False?

If NO do this

Is the condition True?

a 0
b 1
c b*2
if(a){d 1}
if-not(a){e 3}
if(b AND a){f F}
if(b XOR f){f 5}
if(b AND a){}else{f B}

a 0
b 1
c 1*2
if(0){d 1}
if-not(0){e 3}
if(1 AND 0){f F}
if(1 XOR 0){f 5}
if(1 AND 0){}else{f B}

a 0
b 1
c 2
e 3
f 5
f B

a 0
b 1
c 2
e 3
f B() () () ()===

Array element reference

(a=(6,5,C)) = ()a[1]=6
a[2]=5
a[3]=C

a=(6,5,C)
b=a[1]+a[2]()sub(b=B)

This establishes a format for assign and reference array elements individually.
The "array element"([] square bracket) is a closed box "sub" symbol

Loops

a 1
b C

a 4
b 2
while(a>1){
 a a-1
 b b*a
 }

()
a 4
b 2
a a-1
b b*a
a a-1
b b*a
a a-1
b b*a

()
a 4
b 2
a 4-1
b 2*3
a 3-1
b 6*2
a 2-1
b C*1

() ()

= =

=

(while(1){a a+1}) = (a=∞)

Execution & Return value

Return symbolExecution Brackets

exec(return 1) = 1

exec()a 5+1
return a

=6 exec()a (A,C,1)
return a[2]

=C exec()
a 1
return a

=a 2
return a

()a 1
return a

=1

Infinity / Subspace / Normal vector / Perfect roundness

()a^a=a
a+a=a 3D cuboid sub(count(2D rectangle) = a) sub(a=∞)
a*a=a

sub (a normal b = a cos(c))a c
b

2D space sub(count(diameter))
= 3D space sub(count(diameter))
= ∞

(3D space sub(σ(diameter)=0))
= perfect sphere

(2D space sub(σ(diameter)=0))
= perfect circle

Infinity has already been defined with loops, here we clarify

The symbols will be used for general 2D/3D space

We will use for spheres and circles

electron
sub(mass=1)

electron neutrino
sub(mass<484/10)

up quark
sub(mass≈4.4E2)

down quark
sub(mass≈9)

muon
sub(mass≈CE.C4)

7

muon neutrino
sub(mass<553/10)3

charm quark
sub(mass≈917.4)

strange quark
sub(mass≈BB.DE)

tau
sub(mass≈CE.C4)

tau neutrino
sub(mass<1E.55)

top quark
sub(mass≈52A77)

top quark
sub(mass≈1FF4)

Z-Boson
sub(mass≈2B916)

W-Boson
sub(mass≈26673)

Higgs Boson
sub(mass≈3BB8A)

Gluon / Quark
sub(mass≈0)

Particles & Mass

All units are arbitrary
But the ratios between these values are universal, no matter what units used

The symbol for Mass is defined here via the value ratios same as the particles
The symbolism for the mass symbol "interact with space-time"

((a sub(c=d))AND(b sub(c=d)))
=(a b)sub_of c=d

((a b c)sub_of d)
=((a)sub_of d (b)sub_of d (c)sub_of d)

(a XOR b XOR c=d) = ((a b c)sub_of d)

(a AND b AND c=d) = (((a b c))sub_of d)

W-Boson Electron
Muon Tau()sub_of charge=1

(up charm top)sub_of charge=2/3

(down strange bottom)sub_of charge=1/3

W-Boson Higgs Gluon Photon
Electron neutriono Muon Neutrino
Tau neutrino()sub_of charge=0

Charge & "and" / "or" structures

3D space * time
= space-time

4D sub(space-time)

Charge = Charge

Here we establish that Space-time is
is the 4D product of 3D space and time

We also define the construction of the
charge symbol. It is a combination of
"interaction" and "EM field".

((a-b=c) AND (c>b))=(a emit/radiate b)

((a+b=c) AND (a>b))=(a absorb b)

Radiate/Emit and Absorb are defined
as special cases of subtract and add

Big things absorb smaller things

Breaking apart, smaller things are
radiated by larger things

Half-integer-spin *2
=Integer-spin

Half-integer-spin *3
=Half-integer-spin

Half-integer-spin *4
=Integer-spin

Here we establish a basic
property of spin

example of
emit and absorb

FermionLepton

electron muon tau
electron
neutrino

muon
neutrino

tau
neutrino

electron = "wave particle"
more waves = more mass
True-Dot = has charge False-Circle/0 = No charge

particle categories

"Radiate/emit" are "merge" and "fork" symbols except that the smaller side is a wave

Quark
(triangle particle)
Triangle represent 3 color charges of chromodynamics
Dots on triangle represent 1/3 charge

Up Down Charm Strange Top Bottom

Gluon "a wave between
chromodynamics"

Photon "wave-particle"

W-Boson

Z-Boson

"Hadron wave charge"

"Hadron wave no-charge"

Higgs "spacetime wave particle"
gives mass which bends spacetime

Gauge Boson

"1/2 integer spin particle"

"integer spin particle"Boson "interaction-particle"

Particles are defined via mass next, symbolism here is not necessary to decode symbols

electron
sub(mass=1)

electron neutrino
sub(mass<484/10)

up quark
sub(mass≈4.4E2)

down quark
sub(mass≈9)

muon
sub(mass≈CE.C4)

7

muon neutrino
sub(mass<553/10)3

charm quark
sub(mass≈917.4)

strange quark
sub(mass≈BB.DE)

tau
sub(mass≈CE.C4)

tau neutrino
sub(mass<1E.55)

top quark
sub(mass≈52A77)

top quark
sub(mass≈1FF4)

Z-Boson
sub(mass≈2B916)

W-Boson
sub(mass≈26673)

Higgs Boson
sub(mass≈3BB8A)

Gluon / Quark
sub(mass≈0)

Particles & Mass

All units are arbitrary
But the ratios between these values are universal, no matter what units used

The symbol for Mass is defined here via the value ratios same as the particles
The symbolism for the mass symbol "interact with space-time"

((a sub(c=d))AND(b sub(c=d)))
=(a b)sub_of c=d

((a b c)sub_of d)
=((a)sub_of d (b)sub_of d (c)sub_of d)

(a XOR b XOR c=d) = ((a b c)sub_of d)

(a AND b AND c=d) = (((a b c))sub_of d)

W-Boson Electron
Muon Tau()sub_of charge=1

(up charm top)sub_of charge=-2/3

(down strange bottom)sub_of charge=1/3

W-Boson Higgs Gluon Photon
Electron neutrino Muon Neutrino
Tau neutrino()sub_of charge=0

Charge & "and" / "or" structures

On the left we define some ways of
using logical gates to represent
conversational versions of "and"/"or"

On the right we define particle
charge values. This defines the
symbol for charge

Anti particles

Antiparticle
categories

invert(fermion) = anti-fermion
invert(gluon) = gluon
invert(Z-boson) = Z-boson
invert(W-boson-) = W-boson+
invert(photon)=photon
invert(Higgs)=Higgs

W-boson+
electron
muon
tau

()sub_of charge=-1

(up charm top)sub_of charge=2/3

(down strange bottom)sub_of charge=-1/3

Hadron & Atoms

(DUU) = Proton

(UDD)=Neutron

(P)sub_of atom

(PN)sub_of atom

(Pe)sub_of atom

(PNe)sub_of atom

D=Down quark U=Up quark P=proton N=neutron e=electron

((PNNe) (PNe) (Pe))sub_of Atom-1

((PPNNNee) (PPNNee) (PPNee) (PPee))sub_of Atom-2

Atom-1 = Hydrogen, Atom-2=Helium, Atom3=Lithium, etc...

Isotopes and Ions

(Pe)=Atom-1.0

(PNe)=Atom-1.1

(PNNe)=Atom-1.2

(PPNee)=Atom-2.1

(PPNNee)=Atom-2.2

(Pee)=-1-Atom-1.0

(PNee)=-1-Atom-1.1

(PNNee)=-1-Atom-1.2

(P)=+1-Atom-1.0

(PN)=+1-Atom-1.1

The dot on top denotes extra electron, the circle denotes missing electrons
In the text labels we mark them with charge value

(PNN)=+1-Atom-1.2

(PPNN)=+2-Atom-2.2

(8P 8N 10e)=-2-Atom-8.8

((PPNNe)(PPNe)(PPE))sub_of +1-Atom-2

((PPNNN)(PPNN)(PPN)(PP))sub_of +2-Atom=2

Foreach loops

foreach (b in a){ c } =

d=0
while(eval(d<count(a))){
 d d+1
 b a[d]
 c
 }

()
if(a){b}=if(a)
 {b}

a=(6,5,3)
b=0 ()sub()(foreach(a as c){b b+5}) = (b 5*count(a)) = (b F)

(foreach(a as c){b b+c}) = (b sum(a)) = (b E)

This gives us a clearly defined structure for using "foreach" operations

Nesting

Just and example to
show that expression
connection lines are
flexible in 2D

(foreach(b in a){if(a){b}})
= (foreach(b in a) if(a) b;)

(if(a){ if(b){c} })
= (if(a) if(b) c;)

(if(a) if(b) c;) = (if(a) if(b) c;)

Here we demonstrate a few simple ways to simplify nested expressions.
We also clarify that the eval brackets can be closed into boxes, this will help
nested expressions and complex algorithms be drawn like flow-charts

Min / Max

max(a)=exec

b a[1]
foreach(a as c){
 if(c>b){b c}
 }
return b()

min(a)=exec

b a[1]
foreach(a as c){
 if(c<b){b c}
 }
return b()

This defines the min / max functions
The simply return the minimum value or maximum value in an array

A simple example to show
array element brackets just
need to be rotated relative
to the parent bracket

Has / Contains

(b)is_in(a)
= (a)has(b)
 = exec

c 0
foreach(a as d){
 if(d=b)
 {c c+1}
 }
return c

()
((a)has(b)) = (a has(b)) = (b is_in(a)) = (a has b)

Here we define a structure that can be used for "has/contains" and "is in"
It scans "a" for "b"
it returns the count of how many times it found "b" in "a"

All / None / Some / Some-Not

a none(b) = exec
foreach(a as c) if(c b)
 return FALSE
return TRUE()

a all(b) = exec
foreach(a as c) if_not(c b)
 return FALSE
return TRUE()

a some_not(b) = exec
foreach(a as c) if_not(c b)
 return TRUE
return FALSE()

a some(b) = exec
foreach(a as c) if(c b)
 return TRUE
return FALSE()

(a={1,5,C})
 sub a all(<0)=F

a all(<6)=F
a all(<D)=T
a none(<0)=T
a none(<6)=F
a none(<D)=F

a some_not(<0)=T
a some_not(<6)=T
a some_not(<D)=F
a some(<0)=F
a some(<6)=T
a some(<D)=T

()
(a)all_have(b)=a all(has(b))

(a)all_have(b)=a all_have(b)

(a)all_have(b)=a all_have b

Here we define function for evaluating arraying.
all, none, some and some_not take perform and expression on each element
all_have, none_have, some_have, and some_not_have check each check a 2D
array to see if each top level element contain something

Multi-dimensional arrays

a={d,e}
b={f,g,h}()

j={a,b}
j={ {d,e}, {f,g,h} }
j[1]={d,e}
j[1][1]=d
j[2][3]=h()sub

This example defines the basics of multi-dimensional arrays.
It is a simple extension of single dimensional array structures.

Array handling to language abstraction

3D space
 sub(universe)

universe
 sub(diameters all_T(=infinity))

((a)all_has_T(b))
= (a all_has(b)=T)
(a all_T(b))
= (a all(b)=T)

(a some_not_T(b))
= (a some_not(b)=T)

Here we create versions of array handlers that can express truths/facts
Next, on left, we define universe as "3D space whose diameters are infinite

((atom)all_has_T(proton))
=((universe[atom])all_has_T(proton))

(atom sub(neutron all_T(bond proton)))
=(universe sub(atom sub(neutron all_T(bond proton))))

(atom-1.0)none_has_T(neutron)

(atom-1.1)all_has_T(neutron)

(atom)some_has_T(neutron)

These examples demonstrate that we can use array handlers in descriptions
of real world things. We also define that referring to a type of thing instead
of a specific one means you are referring to "all of X in the universe"

Feynman Diagrams, Weak & Strong
Here are Feynman diagrams
Of the weak interaction.

The top depicts neutron
decay via a W- boson
neutron decay

The bottom depicts a
Proton turning into a
neutron via W+ boson
electron capture

The vertical axis is labeled
with a time cross, and the
horizontal axis is labeled
with a space circle.

There work the same as
standard Feynman diagrams
with just a few cosmetic
adjustments to fit Uscript

On the right you see a timeline which shows the Strong
interaction that binds a neutron

The details of chromodynamics are complex, this is a
simplified interpretation.

This example shows how to mark color charge on quars
and gluons. each corner represents a charge.

Corners are divided into top / left / right.

These examples use fundamental physical processes
to help define how we label graphs, describe process
steps, and usage of radiate/emit and absorb symbols.

Red Blue

Green

Red Blue

Green

Anti-Green

Anti-BlueAnti-Red

Units of Time and Distance

Spin Flip
(2 Examples of
spin switching to
opposite direction)

Spin flip usage
examples

(Neutral Hydrogen sub(proton[spin]=electron[spin]))
sub (
 ((electron spin-flip) emit photon)
 sub(
 photon=unit photon
)
)

unit-photon sub(time)
= time unit = time unit

unit-photon sub(1D space)
= distance unit = distance unit

Time/Space graph
example of time-unit Time/Space graph

example of space-unit

Here we define spin flip, hydrogen line photons, and how we use them as our
units of space and time.

This is the measure units used on the voyager and pioneer plaques.

Speed, Acceleration, Momentum & Force

distance / time
= speed

distance / (time^2)
= acceleration

mass / speed
= momentum

mass / accel
= force

Now that we have distance, time, and mass units we can define some of the
basic derived units

Distance Measurement & Particle variables

center-to-center

Here we define symbols to take measurements and "particle variable symbols"
Measurement can be done from center or edge to center or edge
Particle variables symbols make particles visually distinct in expressions

Particle-a

Particle-b

edge-to-edge

edge-to-center center-to-edge

Gravity
Space-time
sub(force=gravity)

Gravity≈(1.41*10^2F)*
((a-mass)*(b-mass))

(a center-to-center b)^2

Here we define gravity using Newtons equation for gravity
This is accurate enough for most purposes
The gravitational constant has been converted for use with our units
6.67408 × 10^-11 only works for meters / kilograms / seconds
Our units are
 mass : 9.109 × 10 ^ -31 Kg (mass of 1 electron)
 distance : 0.211061140542 meters (Hydrogen line wavelength)
 time : 0.7040241837 nanoseconds (Hydrogen line frequency)

EM charge
sub(force=EM-force)

Photon
sub(force=EM-force)

W+/- boson
sub(force =
 Strong-force
 AND
 EM-force)

Z boson
sub(force = Weak-force)

Gluon
sub(force
=Strong-force)

Boson forces

Here we describe force carriers
No higgs because it "gives mass" it does not "mediate gravity"

Relative strength of forces

Particle-a
center-to-center
Particle-b()= 1.55/10^12()
sub(
 Weak-force ≈ gravity*(5*10^A)
 Strong-force ≈ gravity*(5*10^1F)
 EM-force ≈ gravity*(9*10^1D)
)

The above translates to :
“At a distance of 1 femtometer the weak force is approx 10^32 stronger than
gravity, the strong force is approx 10^38 stronger than gravity, and the
electromagnetic force is approx 10^36 stronger than gravity.”

*Warning : We don’t really know much about gravity at these scales!
Newtons equation for gravity is only “accurate enough” within certain scales and ranges. So
the accuracy of this statement about gravity at this scale is not known.

So either
 a) accept that gravity here is defined by newtons equation and these ratios are based on that
 b) just don’t use this table and instead define the forces independently
 c) skip it, if you are not discussing the forces in detail this is not really necessary

Mesons

On the right:
 4 examples of how to combine quark symbols
 to produce meson symbols

 A timeline of a Proton and Neutron exchanging
 mesons. This is a simple description of the
 mechanism binding atomic nuclei together

*It is technically not “correct” to think of the Up/anti-Up and Down/anti-Down as
separate particles, we could define that now, but that’s a much deeper
conversation for another day.

Bonds

proton bond electron = proton EM-bond electron = Atom-1.0

down strong-bond anti-down = down bond anti-down = down-antidown-meson

up up down (all bond to each) = up up down (all strong-bond to each) = proton

N bond P bond e = N strong-bond P EM-bond e = Atom-1.1

NPPe (NPP bonded, Ps bonded to e)
=NPPe (NPP strong-bonded, Ps EM-bonded to e)
=-1-Atom-2.1

Generic bond Strong bond EM bond

Here we define and establish symbols for bonds
One general bond symbol, and specific ones for EM and strong force bonds

Methane
CH4

Ammonia
NH3

Molecular
Hydrogen

H2

Carbon Dioxide
CO2

Water H2O

On the left we give a few examples of
atoms bonded to form molecules

We also establish a symbol for water

Molecules

Pressure

2D space sub (length unit = Area unit)

Circle sub(area=π*(radius sub(length unit)^2))

pressure=pressure=(force normal 2D space)*/area

Here we establish a symbols for area and pressure, and define pressure

States of Matter

(H+ He+ He2+) sub_of cation

Solid

Liquid

Gas

Plasma

3D-atom
 atoms hold 3D structure

2D-atom
 2D Surface tension

1D-atom
 Free Particles

1D-cation
 Free Particles

Gravity is marked by the force arrow in the gravity symbol inside each graphic

Temperature

Temperature, the final and hardest to define
base unit, is defined by the triple point of water.

The graph to the right shows the triple point
of water. it is labeled at 3.FE2*10^B pressure
units and 1 temperature unit.

Below we define 0 temperature as
absolute zero (atom speed=0).
This gives us a well defined temperature scale

(3.FE2*10^B Pressure units)

1 temperature units

0 temperature units
= (atom sub(speed=0))

(water)sub_of gas

(water)sub_of liquid

(water)sub_of solid

Fusion

((a time+ b)sub((b)has(c)))
= (a (time+)has(c))

force
+ atom-a
+ atom-b

(time+)has() atom-c sub a<c
b<c()() = fusion()

(time+)has(atom-2.2) sub_of fusion
force
+ atom-1.1
+ atom-1.2()()

Here we have defined fusion as 2 atoms +force + time whose result
contains an atom that is of a larger atomic number than any of the
original atoms

Since our atomic number can be read as a decimal number, that means:
 -more protons is a larger number regardless of how many neutrons
 -if the protons are the same, more neutrons is still a larger number
but
 -if protons are less then it is not fusion matter how many neutrons

This is perhaps not ideal, we may want to redefine it to use the atoms mass
instead of its atomic number. For now I think this is good though since an atom
with less protons and significantly more neutrons will not be a stable isotope.

Molecules

(O bond C bond O)sub_of molecule

(H bond H)sub_of molecule

(water)sub_of molecule

This defines that molecules are bonded collections of atoms

Systems and Bonds

system sub(molecule atom proton)

Here we establish a starting definition for "system" term we will use a lot.
In Uscript "system" has a very broad scope.

This has not defined "system" as generally and abstractly as we want,
but it is enough for now. The more general meaning will be defined
through more usage as we go forward.

Astronomical bodies & Stars

(astro_body sub(fusion sub(force=gravity))) = Star

We define a symbol for an "astronomical body" as any system for which the
strongest binding force is gravity..

This definition may exclude some small asteroids for whom the Van der walls
force can be a stronger binding force than gravity. I do not believe this is a
problem, at some point a between a moon and a clump of dust we must draw
an arbitrary line,"gravity being the strongest binding force" works fine.

Next we define a "star" as any astronomical body in which atomic fusion is
driven by gravity.

(astro_body aprrox perfect sphere)
 sub(astro_body = spherical astro_body)

(eval_not(astro_body aprrox perfect sphere))
 sub(astro_body = spherical astro_body)

molecule sub(
 bond sub(
 max(force)=EM
)
)

atom sub(
 bond sub(
 max(force)=Strong
)
)

proton sub(
 bond sub(
 max(force)=Strong
)
)

On the left we show
how to reference the
internal bonds of a
system. Here we also
define the strongest
binding forces of
various systems

(system sub(bond sub(max(force) = gravity)))
= astro_body

Astronomical body orbits

The first major classification is approximately spherical / non-spherical

(star-orbiter sub(particle=astro_body))
 sub(particle = star_orbiting-astro-body)

Star-orbiter
This symbol shows a particle orbiting a star using our existing
defined symbols for "orbit/rotation/spin", "particle" and "star".

(star-orbiter sub(particle=spherical-astro_body))
 sub(particle = spherical-star_orbiting-astro-body)

(star-orbiter sub(particle=non-spherical-astro_body))
 sub(particle = non-spherical-star_orbiting-astro-body)

Orbiting a star is a very important class because bodies orbiting a star are
gravitationally bound in orbits, have a consistent source of radiation and energy,
and many other significant properties.

Astro-body-orbiter
A body that orbits an astronomical body.
It's mildly implied that we mean"orbiting non-star bodies", and
that is not necessary, but it can easily be added to the definition.

(astro-body-orbiter sub(astro-body = star-orbiting-astro-body))
 sub(particle = star-orbiting-astro-body-orbiter

"particle" refers to the only particle in the statement, the one in the first symbol

(astro-body-orbiter sub(astro-body = star-orbiting-spherical-astro-body))
 sub(particle = star-orbiting-spherical-astro-body-orbiter

(astro-body-orbiter sub(astro-body = star-orbiting-non-spherical-astro-body))
 sub(particle = star-orbiting-non-spherical-astro-body-orbiter

sub(
 astro-body sub(
 star-orbiter sub(
 count(stars)=2
)
)
)

An astronomical body
orbiting 2 stars()

sub(
 astro-body sub(
 star-orbiter sub(
 count(stars)=0
)
)
)

An astronomical body
passing by but not
orbiting stars()

Host stars

This shows how to count the number of host stars of an orbiter
We will use this to define bodies without a host star (eg. rogue planets)

astro-body sub(star-orbiter sub(count(stars=0))
= free-astro-body

spherical-astro-body sub(star-orbiter sub(count(stars=0))
= free-spherical-astro-body

non-spherical-astro-body sub(star-orbiter sub(count(stars=0))
= free-non-spherical-astro-body

astro-body-orbiter sub(
 eval(orbiter=spherical-astro-body)
 AND
 eval(
 star-orbiter sub(count(stars)=0
)
)

astro-body-orbiter

()
=free-spherical-astro-body-orbiter

sub

astro-body-orbiter sub(
 eval(orbiter=non-spherical-astro-body)
 AND
 eval(
 star-orbiter sub(count(stars)=0
)
)

astro-body-orbiter

()
=free-non-spherical-astro-body-orbiter

sub

These give us a set of general categories of for astronomical bodies like planets,
moons, asteroids, categorizing them based on what they orbit, and/or if they
are approximately spherical.

Energy & Frequency

force * distance
=energy

1 mass sub(energy=1 speed ^ 2)
= (1 mass sub(energy=1))

1/cycle[1 revolution][time]
=frequency

photon sub(energy=frequency*C.A225*(10^A))

Here we define energy (force*distance).
Next we define energy mass equivalence
Then frequency, and finally clarify more
by defining the energy of photons via their
frequency

Uscript speed 1=speed of light
so c=1... so c²=1²... so c²=1
multiplication by 1 does nothing
so e=mc² is e=m

This section defines galaxies as clusters of stars with a common gavitational center.
2 categories of galaxy are defined, planar/spiral and elliptical(ellipsoidal)
We also define black holes using the schwarzschild radius and event horizon

Galaxies & Black Holes

astro_body sub(neutron_star)

astro_body sub(black_hole)

(a(b(c)))=a*b*c

star_orbiter sub(
 (orbiter bond star)sub(
 bond=gravity_bond
)
)

astro_body sub(galaxy) galaxy
sub(spiral_galaxy)

galaxy
sub(elliptical_galaxy)

spiral_galaxy
=spiral_galaxy

elliptical_galaxy
=elliptical_galaxy

(multiple stars
gravitationally
bound to common
center region)
sub_of galaxy

(galaxy approx 2D)
sub(galaxy=spiral_galaxy)

(galaxy approx 3D)
sub(galaxy=elliptical_galaxy)

spherical_astro_body
sub(diameter<4(mass(1.41/(10^2F))))
=black_hole

if(
 (photon distance black_hole)
 <
 black_hole sub(mass(1.41/(10^2F)))
)then{black_hole absorb photon}

Here we introduce symbols for black hole and neutron star that will be defined in
the next sections, and reinforce that no marked operation defaults to multiplication

Neutron Stars

neutron_star sub(
 (count(neutron)/count (proton))>10 1.B*10^32 < mass < 2*10^32
 a=mass[spin][axis] b=charge[spin][axis] c=(system-a line neutron_star)[line]
 system-a absorb (neutron_star emit photon)=d+((cos(b angle c)^e)*f)
 ((system-a absorb(neutron_star emit photon))-d=0)=((a angle b)*(a angle c)=0)
)

This defines several qualities of neutron stars.
(line 1)1.ratio of protons to neutrons 2.mass range
(line 3)3.the observed brightness can pulse
(line 4)4.if it does not pulse then the magnetic axis is in line with rotational axis
or the observer is in line with rotation axis. (either angle is 0)

Systems
system sub(molecule bond molecule)

system sub(particle bond particle)

system sub(system bond system)

system sub(system bond astro_body)

system sub(star_orbiter bond star)

Here we further clarify the
broad meaning of the
Uscript word "system" by
include some more
examples of larger
systems.

This doc is being composed with a full Uscript key (pure self defined Uscript) one “page” at a time
(determined by the dimension of standard document pages) The format will be as you see above, a
page of the key followed by a breakdown and explanation.

Pages added in proper sequence, so at any point the Uscript is self-defined and can be decoded with
the key pages alone. Each page only relies on previous pages to define itself.

Explanation pages can be removed and it still self-defines.

Uscript v1 at http://www.dscript.org/

http://www.dscript.org/

