
Uscript
Table of contents

Pre-read FAQ…………………………………………………………………….. 2
Preview…………………………………………………………………….…….. 4
Introduction………………………………………………………………. 5
Numbers………………………………………………………………….. 6
Radicals…………………………………………………………………... 8
Math………………………………………………………………………. 13
Physics……………………………………………………………………. 17

Particles…………………………………………………………… 17
Hadrons & Atoms…………………………………………………. 22
Distance & time…………………………………………………… 23
Base Units………………………………………………………… 24
Gravity…………………………………………………………….. 24
Weak force + Feynman diagrams…………………………………. 27
The 4 forces……………………………………………………….. 28
Chromodynamics…………………………………………………. 29
Mesons……………………………………………………………. 30
Bonds……………………………………………………………… 31
Molecules…………………………………………………………. 32
States of Matter…………………………………………………… 33
Temperature & pressure……………………………………….….. 34

Astronomy……………………………..………………………………….. 36
Stars & Fusion…………………………………………………….. 36
Planets, Moons, Asteroids, etc……………………………………. 37
Galaxies…………………………………………………………… 40
Black holes………………………………………………………... 41
Neutron stars……………………………………………………… 42

Evaluations, Conditionals, Comparisons & Loops……………………….. 43
Entropy……………………………………………………………………. 46
Possibilities……………………………………………………………….. 48
Time periods & States…………………………………………………….. 49
Life-lines……………………………………………………….…………. 51
Expansion, Contraction, Explosion & Implosion……………….….…….. 52
Birth, Death, and Events in between……………………………………… 54
Life………………………………………………………………………... 55
Has/Contains, Minimum & Maximum…………………………………… 57
Subspace, Subsystems, Environments and Neighbors……………………. 58
All, None & Some………………………………………………………… 60
Consumption & Conversion………………………………………………. 61
Models…………………………………………………………………….. 62
Cause, Effect & Change………………………………..…………………. 64
Intelligence…………………………………………………………….….. 65

Action, Reaction, Proactive & Reactive………………………...… 65
Mind, Observation & Awareness………………………………….. 66
Conscious & Subconscious……………………………………….. 67
Attraction………………………………………………………….. 67
Desires, Urges, Plans, Predictions & Probability…………………. 68
Learning, Forgetting & The Scientific Method…………………… 69

Communication………………………………………………………………….. 70
Pronouns, Instructions & Questions…...………………………………………… 71
Post-read FAQ…………………………………………………………………….72
Resources & links…………………………………………………………..……. 73

V2 – The Self-defining Key

This v1 doc provides detailed explanations and descriptions of the
language, design, reasoning and the creative process.

Best to read this v1 doc first.

v2 is a self defining key with breakdown and short simple descriptions.

Check out v2 if to better understand how Uscript “universally self-defines”

Uscript v2: http://www.dscript.org/uscript2.pdf

v2 is fundamentally the same but there have been some basic revisions to numbers and math
v2 is still a work in progress, I am adding pages to it as I work on it.

http://www.dscript.org/uscript2.pdf

Pre-read FAQ
Q: How is this a universal language?
A : Unlike most languages Uscript divorces itself form the human experience as much as possible.
It starts by defining math visually in a universally obvious way, then physics, and then builds upon
them to construct higher level and more abstract terms. Unlike other constructed languages it does
not define itself with another language, its dictionary is entirely written in Uscript. This document
does describe Uscript with English to help explain it to the reader but the English is not necessary
The definitions are in the graphics, If you extract only the graphics Uscript can stand alone without
any human language to define itself and be universally decipherable (as long as the reader has a
minimum level of understanding in math and physics).

Q: What if other life forms have a different understanding of physics?
A: Math and Physics are Convergent. While language and culture are divergent, meaning if groups
are separated they will tend to diverge and become different over time, Math and Physics are the
opposite. There are levels or “resolutions” of understanding. For example, we believe an electron is
a fundamental particle not composed of smaller bits, but we once thought this of atoms, regardless,
I could still discuss atoms with someone who doesn’t know about electrons and nuclei, and in the
same way if another civilization can see that electrons are made of smaller things they will still
understand our concept of electrons.

Q:What if physics is different in different places?
A:While environmental factors ranging from gravity fields to PH can affect interactions, here we
use the fundamental laws of physics, there are many proofs that these are universal laws. To
simplify : “If you change these laws then stars don’t work! So anywhere we can see stars we know
these laws are true, and we see stars at 13.3 billion light years away (furthest observed object)”

Q:Why do you start with such difficult subject matter?
A:Because I need to build some basic vocabulary and structure, the only way to do that is to start by
defining universal laws and establish linguistic structure and vocab through examples of these laws.
I can’t start with pronouns because first I need concepts like communication, which needs concepts
like interactions & models, which needs logic & programming which needs systems & formulas,
etc. I can’t just say “ this symbol means ‘you’ and this symbol means ‘me’ ”.

Q:So I need to understand all of this stuff to understand Uscript?
A:Not really. I cover many subjects in physics that are not used in any of the higher level concepts
yet. You can easily skip ahead or just learn vocab, and it would roughly work, but without properly
understanding the language & structure that is established in the Uscript definition layers it could
translate poorly. Rather like Chinese characters, if you just translate characters one by one into
English and string them into a sentence, your Chinese sentence is likely to be gibberish.

Q:Is this the full language
A:This is just the first few layers. It is built up to a level where some basic linguistic
communications can be done. It takes TONS of time and work to build the vocab because you can’t
just start “making up words and typing in a definition in English”, each term must be defined with
graphics using only previous layers of Uscript. There is an insane amount yet undefined, I just touch
the surface on few key topics, each topic could easily become a document of its own.

Q:Can I change/add symbols?
A:Of course, the symbol meaning is in the graphics. Feel free to add to it or modify it into your own
version. I could spend a life time on it and barely scratch the surface of human knowledge. Uscript
is under a Creative Commons license, free for any use, even commercial use, No royalty or Fee.

Q:But you use so much English to define you radicals, symbols etc.
A:Only in the first few pages because I am introducing the script and trying to fast track your
understanding. “The English stuff is just for your benefit” not actually needed. For example, the
graphic below defines the math section and the fundamental particles without any English at all.

The numbers are visually obviously
With numbers the equations allow you to easily infer the meaning of the operation symbols
With operations and numbers the math constants and terms are defined
With just numbers the particles are defined

*The particles are defined not because those units are universal, but because the
ratios of the values are the same no matter what units you use.

Quick preview for the curious
Here are a few example phrases built with the vocab defined in this document

We want to speak with you(plural)

There are approx 7.5 billion of us on a planet

We are each composed of approx 30 trilion unconscious cells

Why is the binding force of glalaxies greater than
the gravitational force of the observed mass?

In other words : "what is dark matter?"

Why is the universe expansion ratio of space
divided by elapsed time unchanging?

In other words : "what is dark energy?"

Uscript
A universal logographic physics based language

Uscript (Universal Script) is a language and writing system designed to be as universal as
possible. The composition of characters is done similar to Chinese characters:

1. Logographic
Characters represent words / ideas, not sounds / phonetics

2. Ideogram / Pictogram
Attempt to be visual representations of abstract ideas and concrete things

3. Radical Based
There are small fundamental characters which can be combined to form more complex
characters.

The language, however, is designed from the ground up, with the following rules:

RULE #1 : Must be universal
“If an alien were to read the message they should be able to understand it without

knowing anything about Humankind or Earth. As few assumptions as possible should be
made about the life form reading the document. ”

RULE #2 : SEE RULE #1
* There are of course several goals in its design like efficiency, optimization for carving/pen/brush, elegance of form
and attempt to be intuitive and symbolic. The “rules” above are a joke meant to emphasize that most important is that it
divorce itself as much as possible from all human-centric elements.

There are really only 2 possible fields to base a universal language on : Math & physics

Math and physics are deeply intertwined. Physics can be seen as applying math to the
physical world. Physical concepts in general are more suitable as morphemes for language, math
will be used mostly to help with definitions, and of course express numbers/equations/etc...

A lot of Chemistry, pretty much all biology, and other higher level fields are “not universal
enough” because they depend too much on environmental factors that can vary largely between
environment. eg. which chemical structures are common and stable depends heavily on
temperature, pressure, environmental composition, ambient radiation, etc..

One of the inspirations for Uscript was the Voyager and
Pioneer plaques. On these plaques they attempted to inscribe
messages for aliens, but in order to convey measurements
they had to find a universal unit. Measurements were
expressed using units based on the Hydrogen 1 spectral line,
hydrogen being the most common element in the universe.
The 21cm (1.42 Ghz) Hydrogen spectral line is detectable
everywhere so it is rather safe to assume aliens would be
familiar with it and it can be visually described via the atomic
process that generates it.

Uscript Numbers

Numbers are of course necessary, they are fundamental to virtually any communication and
needed to communicate detailed and well defined descriptions of any kind. Whether you want to
communicate scientific concepts or have a basic conversation, numbers are inevitable.
Firstly, Which base should be used?

Base 10 NO!
We use base 10 for an obvious reason, we have 10 biological digits. Other than the fact that

we have 10 fingers and 10 toes, there is no good reason to use base 10. I often gripe “Stupid 10
fingers! I wish we had 8, they could be be just as useful and then we would use base 8, making my
job as a programmer so much easier”(I bit bang and design custom data/comm formats a lot).

Base 2 Not bad
Base 2 is the most fundamental counting system, so it’s not a bad choice. Numbers end up

being rather long, but its fair to assume any technologically advanced alien civilization would be
well versed in binary and maybe even use it as their default base.

Base 3 Cool, but no.
Base 3 has some good arguments. Ternary (base 3) computers have been built in the past,

and some argue that we ended up using binary because binary technology developed first and it was
too burdensome to convert manufacturing methods and basic components. Ternary can also
represent both sides of AC waves (positive, neutral, negative).Furthermore ternary can be used in a
type of number system that can express positive and negative numbers without adding a sign (see
Balanced Ternary https://en.wikipedia.org/wiki/Balanced_ternary).

Another argument for ternary is that it can be used in optics by using the polarity of light,
but polarity has a full 360 degrees, so with accurate enough sensors this argument could be used for
any base system.

Balanced ternary is hard to mentally process for minds not well trained in balanced number
systems like us, whereas even a civilization that did use balanced ternary as their basic number
system would still be very likely to develop binary and unbalanced number systems.

The fundamental components that make up computers are gates, ternary computers are
actually created by using multiple binary gates. A simple way to imagine this idea is a 1-way valve,
ternary computers just use 2 separate 1-way valves to divide the water current into 2 separate tracks.
So Ternary logic is still based on binary components.

Some analog systems use ternary in a more “pure” way, but they are usually based on
inductor windings/transformers and vacuum tubes, which are bulky and not suitable for complex
computing compared to microscopic transistor logic (not bad for analog stuff like audio though).

Quantum computing could bring a renaissance of ternary, but it is also likely to bring about
many other bases, and still employ base 2, so it is hardly an argument for the universality of base 3.

In short, base 3 is cool, could arguably be a universal concept, but not the best choice here.

https://en.wikipedia.org/wiki/Balanced_ternary

Base 4 Getting better
Base 4 is a pretty good choice. It is a power of the most fundamental number system, base 2.

The only downside is that it is still a bit small. Large numbers become large in digits quickly and
would require a scientific notation system rather early.

Base 5 NO!
The only argument for base 5 that I can think of, besides our 5 fingers which is human

centric, is that it can make a balanced base 5 number system. It could represent +2 +1 0 -1 -2, so
similar arguments used for base 3 can apply. A neat idea, but definitely not the best choice

Base 8 Good
Base 8 is a good choice. It’s a power of 2, values are close the same length (number digits

required) as our base 10, It would require scientific notation a bit earlier than base 10. The only
reason I lean towards something else is that it is 2^3 (2 to the power of 3), I don’t like that 3. Its a
bit arbitrary but since 2 to the power of 4 is just as reasonable an option I would prefer that.

Base 12 Interesting.. but no.
Base 12 has some interesting advantages. Base 12 numbers can be divided by 2,3,4,6,etc..

without remainders. Being able to divide by the 3 smallest integer divisors (2,3,and 4) is handy, but
it suffers the same problem as base 10, its messy to convert back and forth between binary(and also
ternary), the system that technology will rely on.

Base 16 Yes! Yes! Yes!
Base 16 (hexadecimal) is a great choice. It beats base 10 in value to digits ratio (I only

compare to base ten as it is our reference point), so it would allow larger numbers before resorting
to scientific notation. It is 4 digits of base 2, in other words its is 2^2^2 (2 to the power of 2 to the
power of 2). Base 16 has all the advantage of base 2, its is composed of 4 bits, base 16 logic and
technology can use some cool digital hardware optimizations.

Base 256 Too far! Go back!
Base 256 is 2^2^2^2, or (2^2)^(2^2), it is slightly more “symmetrical” than base 16. We

need to be able to write these numbers as symbols, however, and 256 is excessive I think.

Numbers are perhaps the easiest to define set of symbols. By listing number symbols and
associating collections of dots any number can be made universally defined. I don’t thinks it is
necessary to draw dots for all the symbols, just enough for the pattern of +1 to be plainly obvious.

Reading right → left we place larger powers on the left, so that they are read first, in other
words the symbols are little-endian (smallest powers on the right). These number symbols are
pictographs of a binary signal (with some leading 0 values removed)

1 = low low low HIGH represented as low low HIGH
2 = low low HIGH low represented as low HIGH low
3 = low low HIGH HIGH represented as low HIGH HIGH
4 = low HIGH low low represented as HIGH low low
5 = low HIGH low HIGH represented as HIGH low HIGH

etc...

1 2 3 4 5 60 7 8 9 10 11 12 13 14 15

Uscript radicals

The Uscript radicals were designed to be either relatively obvious visual representation of
the concepts they represent and/or be visually defined using more obvious radicals in the same way
numbers can be defined using dots to indicated we are defining symbols as numeric values.

These symbols do not” self-define” alone, they are defined in graphics on following pages
and and in further sections. They do no need to be obvious but I try as hard as possible to make
them visually representative.

There is of course a fundamental assumptions that must be
made to read the script. Reading direction in Uscript is top
→ bottom , left → right, both of these are not universal.
We must assume that this will be discovered through
analysis, the math and physics examples can help establish
this.

It is not impossible to read it backwards or bottom to top
and understand it, who knows, perhaps there are other life
forms that prefer to read information in a way that we
would consider reverse order.

Complex characters are combinations of radicals, these
radicals are also read top → bottom and left → right. But
the whole symbol is what matters so this is not important.

To clarify this a “movement arrow” can be used to define
these reading rules. (The description of the arrow radical
explains how and why this can be used in a universal way)

There are reasons for these radical choices, and they are
arguably intuitive or able to be determined through context
or by analyzing larger quantities of Uscript text.

Some radicals have multiple forms, to make it perfectly
clear without needing any guesswork or analysis, simply
including the chart on the left (without English) will make
clear which radicals have multiple forms and what they
are.

The individual radical definitions explain why these
radicals can be seen as good visual representation, what
they can represent, and how their meaning can defined
visually without use of any external language.

Particle

Space

Wave

Time

Fork

Merge

1D

2D

3D

Subset

Superset

Bond

Hadron

Movement

Container

Radical introductions

 Particle, Matter, Point, Radix

Meaning Reasoning

Particle A dot is an obvious symbol to represent a particle.

Matter Matter is observable as particles, while it can be argued that everything
including matter is composed of energy and waves, matter tends to be
observable and detectable as a “solid particle” as opposed to non-mattter
energy which is observed more as waves. Matter also has gravity, which
causes it to accumulate on large scales, making it tend towards more point
like collections, and even up to black holes singularities which are believed
to be a perfect single point.

Point A dot can be used to indicate a specific point in a field or region.

Radix Point
(aka. Decimal point)

While reading a little-endian number (larger powers to smaller powers),
reaching a “particle” can indicate that you have hit the level of smallest
whole unit, so everything afterwards is smaller than a whole unit.

 Space, Region, Zero

Meaning Reasoning

Space An empty circle or square are the most obvious visual representation of “empty
space”

Region Because these symbols encapsulate the empty space they can also represent the
concept a region. In many languages the word space is often used as a synonym for
region.

Zero Empty space is probably the best metaphor for the number and concept of zero

 Wave, Energy, Information

Meaning Reasoning

Wave A sine wave is the most ideal wave form, the zig-zag is just easier to draw, but
this ease is based on the mechanics of the human hand. The sine wave form
can be quickly defined to be equivalent to the zig-zag to prevent confusion
that may arise from erroneously assuming they are different symbols.

Energy Energy exists as waves in fields, it can manifest as particles and mass, but it is
more broadly associated as more wave-like in form. Although energy
comprises matter, energy in matter form has properties more “point-like”
whereas non-matter energy tends towards wave-like properties.

Information Energy and waves are good metaphors for information, they allow particles to
interact across space. A wave has many possible forms, so any one form
provides information regarding its origin, whereas a point particle (used to
represent matter) has 2 states state (existence/non-existence).

 Time / Entropy

The “time / entropy” symbols is the least intuitive of all the base radicals, as such will
absolutely require a visual definition. Many composites will be built upon this symbol. It is not
impossible to to derive its meaning from context given enough text, but this symbol in particular
should defined.

On the left you see the English definition of the time / entropy symbol.
Obviously this is just for this document, defining it in a Uscript
document must be done visually without reference to other languages.
There are many ways this can be done clearly, here are just a few.

Here on the left you can see using simple particles with movement arrows.We
have defined the particle to be moving to the left, and its position at the bottom has
moved to the left from the position at the top.

This however is still open to confusion. It is not
impossible to see this picture and come up with
incorrect but logically sound conclusions. One could

logically conclude that the “top of the intersection indicates attraction
to center and bottom indicates repulsion from center”. This is not
what we want so I prefer other visual definitions.

On the right is a better visual definition done in 2 ways. The
orbiting particles and direction of of orbit makes it pretty clear that
the system is progressing through time. I have included 2 forms of the
orbiting time definition to also demonstrate that the time/entropy
symbol can be expanded to display multiple “frames”. This not only
helps the visual definition be clearer, it is also a useful way to apply
the time/entropy symbol to express multi-stage process and stages of
time-limes.

Entropy is trickier. A popular understanding is that entropy is
“chaos/disorder” or “diffusion”, but the scientific definition is more nuanced than this. Entropy is
only required to always increase in closed systems, and systems can be naively thought to decrease
in entropy simply due to a misunderstanding of the nature of entropy and randomness.

Here on the left you see one simple way to visually
describe entropy, To better clarify that we are referring to
entropy, and not just just particle diffusion, we can

include a couple more visual definitions. Below you see one where a particle is decaying into
waves, and another where a wave is red-shifted. These 3 definitions together should be enough to
hint toward entropy, or at the very least imply heat-death, but it could still be confused with both
axis being time. Entropy will be better defined and distinguished from time later in this document.

Order Entropy

Past

Future

 Fork / Divide

Meaning Reasoning

Fork The fork symbol shows one line splitting into 2, an obvious fork. To clarify it any
visual definition showing an object or system being divided can be used.

Divide A fork is a good visual for division by 2. In order to use it as a general
mathematical symbol for the division operator it must be defined as such.
Defining it as division will also clarify the fork meaning. This will be shown in
the next section on math definitions in this document.

 Merge / Combine / Fuse

Meaning Reasoning

Merge 1D lines merging into a single line is a simple obvious visual for merging.

Combine The concept of merge is easily extended to the concept of combine.

Fuse Fuse is a rather obvious extension of the concepts merge and combine. A visual
definition of two particles combing into a single particle can be used to define it
visually.

 1D / Line

Meaning Reasoning

1D A line is a perfect visualization of 1D.

Line Nothing could be better to define a line than a line.

 2D / Plane / Multiply

Meaning Reasoning

2D 2 lines is a decent visual metaphor for 2D. It is not clear though, it could be
interpreted as other things like “corner”. It is defined in the math section.

Plane The concept of 2D is easily extended to mean plan.

Multiply Multiply is a good extension of the concept of Plane and 2D. This meaning will
definitely require further definition. Proper definition will be done in the next
section of this document for math concepts.

 3D / Exponent

Meaning Reasoning

3D 3 Lines in the shape of a cube wireframe corner, good but still requires further
definition.

Exponent 3D can be a rather stretched metaphor for exponent, Further definition in the next
section of this document on Mathematics.

* All mathematical and dimensional meanings will be elaborated upon in the math section

 Superset / Greater than

Meaning Reasoning

Superset This symbol is a decent representation of superset. Subset and superset
only differ in how they are read. Seeing as Uscript is read top → bottom
the symbols above would be read X(several symbols in a group) is a
superset of Y(one of those symbols).

Greater than Being a superset of of something implies that it is greater than. Detailed
definitions of this will also be included the math section of this document.

 Subset / Less than

Meaning Reasoning

Subet The subset symbol is a vertically inverted superset symbol. The subset
symbol is read top → bottom, the symbols above would be read X(a single
symbol) is a subset of Y(a group of symbols including that symbol).

Less than Being a subset of of something implies that it is less than the whole.
Detailed definitions of this will also be included the math section of this
document.

 Bond

Meaning Reasoning

Bond The bond symbol is not very intuitive alone. It can be used in any rotation,
with bonded units inside or outside the bond symbol, and used to represent
multiple bonds in larger bonded structures. Defining the meaning of this
radical will be done in detail later this document.

 Hadron / Quark

Meaning Reasoning

Hadron / Quark Hadrons are quarks held together by the strong force which is has three
types of charge hence a triangle. This symbol and the concept will be
further explained and defined later in this document.

 Movement / Momentum / Direction
Meaning Reasoning

Movement / Momentum
 / Direction

An arrow is a great representation of movement and direction. The
arrow symbol we use is not arbitrary. Aerodynamics and fluid dynamics
in any environment make the arrow the most ideal design for projectiles.
The heavy pointed end will always be the direction the projectile moves
in. While it is possible to design projectiles shaped more like a rocket
where fins are in the back, the fins will generally be pointed backwards.
It is safe to assume this shape will be universally understood to mean
something relating to direction and movement.

 Container

Meaning Reasoning

Container The container symbol is a visual metaphor of a container, it is akin to
brackets. An open top box is perhaps not universal as its usefulness
depends on aerodynamics/fluid dynamics and gravity, but it can be rotated.

Uscript Math
Once you have numbers mathematical symbols can be anything you want and be defined

easily by providing some example formulas. The symbols are meant to be physical processes that
describe the operation, that way they are well suited to be extended to describe physical processes.

 = 2 Dots is used to indicate equals

 + The combine symbols is used for addition

- The radiate/emit symbol is used for subtraction
*radiating is non-commutative, like subtraction, and the best
 physical process to describe subtraction

x The 2D symbols is used for multiplication

% The fork symbols is used for division
*If I use this for subtraction then I don’t have anything good for division
and radiate/emit is actually a better fit for subtraction

^ The 3D symbol is used for exponentiation

*3d is a very stretched metaphor here. not ideal I admit

√ A combination of 2D and Fork symbol are used for square root

3D-fork means Nth root. The N is put after the symbol

** The symbols try to find a physical process or property to match the math operator. Many may find it odd
that +/- are not paired. This is the best fit for the set as whole using our fundamental symbols and processes.

√
n

Mathematical meanings can be most clearly
defined by using some example equations. The
meaning of the 1D, 2D, 3D, 4D symbols can be clearly
defined with the visual definition on the right. The
concept can extend into higher dimensions as well.

Reasoning for math symbols
• Equals is 2 dots, implying 2 things that are equal
• Merge is an obvious choice for addition
• Radiate for subtraction is like a value radiates away a value

*radiation process is defined in later section of this document
• 2D is a metaphor for multiplication in that a plane of x length and y width is an area of x*y
• Fork symbol represents divide. Forking is usually more like division than subtraction
• 3D symbol for exponentiation is a bit of a leap. Definition required.
• 2D+fork means square root because a square root can be considered a 2D division in that it

finds out what length the side of a square would produce the area equal to the input value.
• 3D+fork means nth root. 2D will be reserved for square root because it is such a common

operation and 3D will be used for rooting in general. This is arbitrary but will be easily
made clear with a few sample equations

Example equation / Visual definitions

Above are some example equations that clearly define operation using only the numbers already defined
Equations are: 1+1=2 2+3=5 5-3=2 1-2=-1

1x1=1 2x3=6 8/2=4 9/3=3

These basic equations should clearly define +,-,x,% and =, it also gives an example of
negative numbers, which just uses the subtract symbol as a prefix like we do normally. Using a
negative symbol prefix to indicate negative numbers is a bit arbitrary, there are other possible forms
of notation, but other than balanced odd number bases all other choices are just as arbitrary. Being
intuitive and clearly definable is all that is needed to be universal, and it meets these criteria.

Next we can use some equations to to clarify how the power digits are written. Just like the
bits that make up each number symbol, the numbers are little-endian left → right. The above
equations are in hexadecimal and decimal(values converted to base 10) :

HEX: F+1=10 21-D=14 11/8=2.2 11-5=18-C=6x2=12
DEC: 15+1=16 33-13=20 17/8=2.125 17-5=24-12=6x2=12

Next we add exponents, like most math it is easy to define with a few examples.
HEX: 2^3=8 6^2=6^2=24 5^2.8=37.E6D5C63AE
DEC: 2^3=8 6^2=6^2=36 5^2.5=55.9016994375

Roots are added next, again a few examples will quickly define the symbol and structure of its use.
HEX: 9(sqr root)=9(sqr root)=3 10(sqr root)=4 2(sqr root)=1.6A09E667F

19(root)2=19(sqr root)=5 8(root)3=2 8(root)1.8=4
DEC: 9(sqr root)=9(sqr root)=3 16(sqr root)=4 2(sqr root)=1.414213562

25(root)2=25(sqr root)=5 8(root)3=2 8(root)1.5=4

The container radical can be used as brackets, a few examples will easily clarify this usage.
HEX: (2x3)%(A%5) = (2x3)%(A%5) = 6%2 = 3
DEC: (2x3)%(10%5) = (2x3)%(10%5) = 6%2 = 3

Now we have =,+,-,*,%,exponents,roots and brackets. We can now express almost any formula.

Next we need variables, this will give us access to algebra. We use alphabetical letters for this
normally, but in Uscript we don’t have an alphabet.

We could just allow any undefined symbol to mean “variable”, but it is better to have a set of
symbols predefined for this.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Numbers

Variables

By adding a “wave” radical to the first line of each number symbol we create a set of 15 symbols. It
can be interpreted as “wave number” = “variable”. This needs to be defined of course, so we can do
that with a few quick examples.

Above we have a few algebra examples. These 3 examples should be enough to get the message
across. We will assume we don’t need to explain what a variable is and the concept should be
universal and recognizable, a safe bet for any technological civilization. But we may need to
provide examples of solving algebraic equations, solving the numerical value of a variable will
ensure that variables are not just confused for an alternative writing form for numbers.

The equations are : a + b = c b = c – a (2a) + b = c + a
(3+a=8) = (a=8-3) = (a=5)

Variables will be used in many universal laws and equations so it will defined even better later.

At this point we get to the real of advanced math(s). Trig...Calculus... and beyond. This I will leave
mostly open for now. I do not wish to build too many structures for mathematical expressions
before getting to the more linguistic elements, I fear restricting available designs for language too
much. So these will require a second pass.

Constants and concepts
There a tons of mathematical concepts and constants that we can define. Here are a few basic ones.
Math is an insanely deep field and I’m only going to build a few things we may need right away.
I’m just scratching some surface here.. and we expand a bit later... this rabbit hole be deep.

Diameter

Radius

Circumference

PI
2D Particle
i (√-1)e

1D Space
Distance

2D Space
Area

3D Space
Volume

Circle
Diameter

Sphere
Diameter

Plane X

Plane Y

Cuboid X

Cuboid Y

Cuboid Z

Sine

Cosine

Tangent

Right Triangle

Trig Side

Hypotenuse

Trig Angle

Triangle

Triangle Angle

Triangle Side

Untranslated lower portions reads:
pi = 3.243F6(hex) e = 2.B7E15(hex) i = sqr root of -1
radius + radius = diameter circumference = pi * diameter circle area = pi * (radius pwr 2)
sphere volume = (4/3) * pi * (radius pwr 3) area of 3d sphere = 4 * pi * (radius pwr 2)
rectangle area = x * y cubic space = x * y * z surface of cubic space = 2 * ((x*y) + (y*z) + (x*z))
sum of 3 angles of a triangle = 1/2 circumference sum 2 non-right angles of a right triangle = 1/4 circumference
sine(angle) = opposite / hypotenuse cosine (angle) = adjacent / hypotenuse tan(angle) = opposite / adjacent

*circumference is used to denote a full circular revolution, one circumference is 360 degrees

Uscript Physics
Now that we have some basic math we proceed to defining “things” and “processes”, in other words
“nouns” and “verbs”. (technically we already have a few, number are nouns and operations are
verbs)

We will start with fundamental universal physics like particles, forces and interactions.

Higher level language will have to be built upon these. For example if you were to jump straight
from physics to conversation then “I like you” would have to be expressed as something akin to
“particle emitting this wave(I) attracted to(like) particle absorbing this wave(you)”.

This may seem strange or cumbersome, but it is necessary to ensure maximum universality. No
human and earth centric concepts may be used. In reality there are many levels of definitions
between physics and “I like you” so it will quite different form the above example.

Particles
The simplest universal way to define the elementary particles is by mass. For this we first need a
mass unit. The best solution for this is to define all the particles in relation to one of the particles. So
which particle do we choose?

The most stable and common particles in the universe are photons, electrons and protons. Photons
have no mass, protons are quark composites, so that leaves us with electrons as the obvious choice.

So now that we have our unit of mass we can define all the elementary particles… the only
exception is that the gluon and photon both have 0 mass, so they will need to be distinguished from
each other via other means.

up
2.2 MeV/c²

charm
1.28 GeV/c²

top
173.1 GeV/c²

down
4.7 MeV/c²

strange
96 MeV/c²

bottom
4.18 GeV/c²

electron
0.511 MeV/c²

muon
105.6 MeV/c²

tao
1.776 GeV/c²

electron
neutrino

2.2 eV/c²

Z boson
91.19 GeV/c²

W boson
80.39 GeV/c²

higgs
124.9 GeV/c²

photon
0 GeV/c²

gluon
0 GeV/c²

muon
neutrino

0.17 MeV/c²

tao
neutrino

18.2 MeV/c²

Fermions

QuarksLeptons

Bosons

We will need to convert all values into electron mass units (1=the mass of an electron), so we will
divide all values by the mass of an electron, and convert into hexadecimal.

The precision of the mass values of particles is not perfect, except for the electron and muon for
which we have relatively precise values, most values are not very precise yet, but we will make do

with what we have for now. These values can always be updated as our precision increases. This
precision should be plenty to distinguish the particles from each other and the ratios between them
should be unambiguously identifiable as the elementary particle mass values.

Even if a civilization has not yet resolved all of these values, with enough of them they should be
able to deduce the meaning of unknown values and particles.

MeV/c2 Electron Mass Units Hexadecimal

Electron 0.511 1 1
Muon 105.6583 206.7677 CE.C487FC
Tau 1,776 3475.538 D93.89BA5

Electron neutrino 0.0000022 0.000004305 0.00004839D
Muon neutrino 0.170 0.33268 0.552A8438
Tau neutrino 15.5 30.33268 1E.552A843

Up quark 2.2 4.30528 4.4E26D480
Charm quark 1280 2327.27 917.451EB8
Top quark 173,000 338,551 52A77

Down quark 4.6 9.001 9.00068
Strange quark 96 187.866 BB.DDB22D
Bottom quark 4180 8180.039 1FF4.09FB

Z boson 91,180 178454 2B916
W boson 80,380 157299 26673
Higgs boson 125,000 244618 3BB8A

And next we use these values to associate symbols with each particle.
First I would like to create a character for mass, a simple chart with
symbols and numeric mass values would suffice, but a character for mass
is rather vital so I will define it here.

On the right first is the definition for space time, and below it a definition
for interactions.

Our character for mass will read as “interact space-time”

The definition for space-time is
3D space + Time = (new symbol) space-time

The next line simply states that space-time is 4D
Space-time is a subset of 4D

Finally there is a visual definition of interactions. It shows that the symbol
presented contains a subset that involves 2 particles, over time one
particle radiates a wave, and the other absorbs it.

It only defines this radiate-absorb interaction as a subset of the interaction
symbol, this way “interaction” can still have a broader meaning.

*some of the resolution in my numbers not real and simply a product of unit and base conversion

Above we have defined all the elementary particles by mass. Now we can use the particles symbols
to quickly define other properties like charge and spin, as well as differentiate gluons and photons
by describing their interactions between
particles.

It’s about time for words like “or” “and” etc..

We will build binary logical gates and use
them as their linguistic equivalents, as
opposed to naming the gates after their
linguistic equivalent as we normally do.

The left of the image uses a truth table to
define a simple system for logic gates. We
use an X shape and mark or the TRUE
quadrants by placing dots on the respective
“X terminals”

The image on the left shows the following

Far left (top to bottom) AND, Inverted XOR, OR, NAND, XOR.

Next near top middle we define the inversion symbol as having 2 forms, then to the left of that we
have 2 examples of each inversion symbol. They both operate the same of course, just 2 different
drawing methods.

Below that there are 8 logic examples
Column 1: 0 AND 0 = 0 0 AND 1 = 0 1 AND 0 =0 1 AND 1 = 1
Column 2: 1 OR 0 =1 1 NOR 0 = 0 0 NOR 0 = 1 1 NAND 1 = 0

Finally at the bottom right is the statement invert(a (inverted XOR) b) = A XOR B

In the above graphic we first create a new symbol for negative numbers. Using the same symbol for
subtract and negative makes sense in math perhaps, but not in physics. We really need to get away
from expressing negative values as “subtract x”, this is NOT good idea in my opinion, it can
confuse the process of “radiate/emit/subtract” with “negative/opposite” but we will allow both.

Top left we define that the invert symbol can represent negative values
0-1 = -1 = invert 1

On the middle left we create symbols for Quark, Lepton, and Fermion.
On the bottom left we create the symbols for Gauge Bosons, and Bosons

In the top right we define a new symbols for “electric charge”. We reuse the “interaction symbol”
and add a new symbol (the bottom half of the symbol) for “EM field”. The “EM field” portion has
not yet been defined, however simply using it here will make it clear enough what it means and the
context of the mass symbol already defined will allow us to consider the “charge” symbol clearly
defined from here on (The full concept of “EM field” will require further definition). A second
version of the symbol is defined as well, one that simply merges the 2 components into a single
symbol.

On the right we assign charge values to the particles. All charge values are triple what we are used
 to. Multiplying all the charge values by 3 was done because I wanted to make all particles charges
integers. I realize this is going to irk some physicists, I am not married to the idea, natural units
could be used it would just make the chart a bit messier. I thought it might be fun to try this charge
unit and see how it works. In later documents when I get to describing more complex physics
equations I am curious to see what effect it has as I have never seen this charge unit system used.

I do feel a bit of remorse having based mass on electrons and charge on quarks, and not using a
natural unit charge. I suppose I could base mass on the up quark but that would only help 1/6 quarks
become integer mass values, no real gain. I prefer a smaller value because the electron neutrino has
such a small value and I can just barely avoid using scientific notation in these charts.

The symbol we define here for W boson is specifically the W- boson. The W+ boson will be
represented as an anti-particle.

*Of course a unit system akin to Kilo, Mega, Giga, etc.. could be devised, and scientific notation
can obviously be used since we have all the math required, but I managed to avoid them so far
without resorting to long numbers and shall continue hold out as long as reasonably possible.

Some particle symbols reasonings (I tried as hard as possible to not just assign arbitrary symbols)
In almost all cases DOTS represent charge and CIRCLES represent lack of charge.

Symbols for spin particle categories combine (1D + particle + rotation movement) thus creating
symbols we can use for angular momentum as well (just remove the particle DOT).

Gluons are strong force carriers for Quarks, and W/Z bosons are responsible for weak decay which
allows quarks to change into other types of quarks, so these bosons include the hadron/quark
triangle.

Leptons increase their waves with increasing mass.

The Higgs Bosons starts with “Space-time” because in gives mass which bends space-time.

The photon is symmetrical because it is its own anti-particle.

The symbol for “Boson” is based on the symbol for interaction because they carry the forces.

Anti-Particles
Particles with anti-particles have been designed so they can be vertically inverted to represent their
anti-particle compliments.

For bosons with no meaningful concept of anti-particle I tried to make them vertically symmetrical
if it could be done without much sacrifice to what I consider “ideal representative symbol design”.

The image above defines and explains symbols for anti-particles.

Top Left : Define symbols anti-fermion, anti-quark (and each individual anti-quark) as well as
anti-lepton(and each individual anti-lepton).

Bottom Left : 2 statements to define anti-fermions and clarify some methods of applying
expressions regarding particle properties.

anti-fermion = fermion - ([fermion charge] * 2)
anti-fermion charge = 0 – fermion charge

Top Right : invert(fermion) = anti-fermion invert(gluon) = gluon invert(Z boson) = Z boson
 invert(W- boson) = W+ boson invert(photon) = photon invert(higgs) = higgs

Bottom Right : We define the charge of each anti-particle with charge. This is redundant as we
have already defined it with the expressions on the Bottom Left, but this can help ensure clarity.

Hadrons and Atoms

Now that we have elementary particles we can define protons,
neutrons and atoms. We already have universal units for mass and
electric charge, using the same method as the voyager and pioneer
plaques we can use the hydrogen line to give universal units of time
and distance. Once we add time and distance we can build composite
units like speed, area, volume, density, force, power, etc...

On the right are some very quick visual definitions to give us
symbols for proton, neutron and atom. We define the atom symbol
with examples as subsets because there are many types of atoms.

Technically we should include strong force bonds and EM bonds in
these definitions, but these are still pretty clear without them and I
am going for a minimalistic approach for now, defining only as
many symbols as needed to reach each next level. Using brackets,
even with the subset container should help clarify we mean that these particles are are combined
into a single unit. Later the bonding forces can all be added but it is important to leave as much
flexibility as possible for higher levels. (I am writing this document as I design the script. This pdf
not only documents the script but also the creative design process.)

Isotopes

Above we define a notation for atom types and isotopes
The top line in the graphic above reads:

 { (2N 1P 1E) xor (1N 1P 1E) xor (1P 1E) Subset-Symbol Atom-1 }
={ [(2N 1P 1E) xor (1N 1P 1E)] xor (1P 1E) =Subset-Symbol Atom-1 }
=[Atom-1 has subset (1P 1E), Atom-1 has subset (1N 1P 1E), Atom-1 has subset (2N 1P 1E)]

This defines that Atom-1 is Hydrogen, including all its isotopes.
It also clarifies a usage of XOR, and that successive XORs means only one of the many, and that
the subset symbol can be used without encasing the subset expression.

*this usage structure of subset may get deprecated

This new way of using subset takes on a more natural linguist role as a standalone “is/are” symbol.
A is B (A subset B), does not necessarily also imply B is A
whereas
A = B implies B = A

The next line defines notation for isotopes and defines the Helium(Atom-2) atom/isotopes to clarify
how the notation system scales to all atoms/isotopes. It reads:

(1P 1E) = Atom-1.0 (1N 1P 1E)=Atom-1.1 (2N 1P 1E)=Atom 1.2
(3N 2P 2E) xor (2N 2P 2E) xor (1N 2P 2E) xor (2P 2E) = Atom-2

Ions
Next we should define Ions.

Above we have a simple notation for anion and cations. Ionic charge goes above the atom symbol,
whereas information about the nucleus is below the atom symbol. This seems appropriate as the
electron shell is much more important in determining interactions and properties.

The top line reads:
(1P 2E) = +1-Atom-1.0
(1P 1N 2E) = +1-Atom-1.1
(1P 2N 2E) = +1-Atom-1.2
(1P) = -1-Atom-1.0
(1P 1N) = -1-Atom-1.1
(1P 2N) = -1-Atom-1.2

The bottom line contains 2 larger statements. This help clarify that it extends to stronger charges
and other atoms. The statements are:

(2P 3N 1E) xor (2P 2N 1E) xor (2P 1N 1E) xor (2P 1E) subset -1-Atom-2
(2P 3N) xor (2P 2N) xor (2P 1N) xor (2P) subset -2-Atom-2

*The dot/circle symbols are used to represent charge. Note that dot does not represent
negative(positive in Uscript) charge, it just means “charge”. The circle (space/zero) symbol is not
meant to mean positive(negative charge in Uscript) charge, rather it represents a “lack of/missing
charge”

Distance & Time
We will use the Hydrogen 1 line to derive universal units of distance and time.

Top Left we define a symbol for “spin flip”
Top Middle :Neutral Hydrogen sub(electron spin flip radiate photon) = photon container = photon unit = photon unit
Top Right : we define a general symbol for “time” to help separate time from entropy and clarify references to time
Bottom Left we define symbols for our units

photon container sub(time) = photon time unit = photon time unit
photon container sub (1d space/distance) = photon distance unit = photon distance unit

Bottom right : we use a couple space/time graphs to ensure the symbols are well defined.

Base Units
Unit inventory time. SI base units:

Length based on hydrogen line
Time based on hydrogen line
Mass based on electron mass
Current can derive, we already have electric charge unit (equiv coulombs)
Mole arbitrary number for “particle count”

*Mole not even necessary, can just say “x particles of y”
Candela Can define arbitrarily based on photon frequency and watts
Temperature No unit yet, will use triple point of water

So far we have everything we need for all the SI base units except temperature which will be
defined using the triple point of water, just like the Kelvin scale, except it wont set the triple point to
the human centric 273.16. I will add temperature later, but we will first need molecules and states of
matter for that (solid, liquid, gas, plasma)

Since we are comfortable in knowing we can describe the entirety of SI units in Uscript, let’s define
a few that we will need soon and move on for now.
d / t = v d / (t^2) = a m * a = Fm * v = p

Above we define symbols and unit values for velocity, acceleration, momentum, and force.

Gravity
Gravity is a relatively easy concept to define now that we have mass, distance, and force. Well easy
if we use Newton’s equation, the General Relativity equations are of course much more complex.
Newton’s equation is usually considered accurate enough for many applications.

General Relativity brings with it the need for a large amount of definitions. While it would of
course be possible to define it all right now, I don’t want to overload on math yet. “programing /
algorithms” is covered later, they will be needed to express GR, as well as be key elements for
much linguistic expression. I am aiming to establish a small set of definitions that can act as
“minimal key”, so GR will be considered part of a “extended information database” as opposed to a
fundamental element of the linguistic key.

* “key” refers to the purely Uscript based diagrams that “self define” and establish a language. eg. The math
section is a “stand alone key”, whereas the physics section requires many elements of math, “math section +
physics section” is a valid key but the physics section without any math/numbers could never define itself
properly. Oh, you could try, but you would effectively/necessarily create a numeric system and math
functions in the process)

Seeing as we will define gravity with an equation that could be considered an approximation, we
should add a symbol for approximation.

The concept of approximation should be easy, irrational numbers like pi or square root of 2 should
be universal enough, any civilization with math will have come to terms with the fact that they must
frequently approximate values of irrational numbers.

Above we have the following statements which will clearly define our symbols for approximation
pi = circumference / diameter pi≈3.24(hex) pi≈163/71(hex) √2≈1.6A(hex)

*this will be added early in keys to the math section, and the ≈ will be used were appropriate, eg. particle mass values. It
is also very useful linguistically.

Now we can define a symbol for gravity without the physics equivalent of grammar police
screaming at me or using the “heavy” Einstein field equations.

Above we have the beginnings of the Newtons equation for gravity using variables to reference 2
“things” and a usage of the distance unit that allows us express distances between 2 variables. The
equation reads:

((variable a subset mass) * (variable b subset mass)) / (a distance unit b)

This is where I have to put in some tedious maths work.. The gravitational constant needs to be
used, but it must be converted for our units system. Our current units are :

mass : 9.109 × 10 ^ -31 Kg
distance : 0.211061140542 m
time : 0.7040241837 nanoseconds
force : (9.109 × 10 ^ -31 Kg) *(0.211061140542 m) * ((0.7040241837 nanoseconds) ^ 2)

What have I gotten myself into here *facepalm*. Units are all arbitrary anyways, so these units are
just as “good” as SI units, but converting stuff, like the gravitational constant, is gonna be a bit of a
chore, and I will have to be very careful or one mistake could get compounded as we build levels of
equations and units upon equations and units. Its just a painful conversion, a small price to pay for
universal units.

Nothing left to do but roll up our sleeves and get to the math(s). Using Newton’s equation:
1 N = 1 kg * 1m / s^2
 (G (1 Kg * 1Kg)) / 1 Meter ^ 2= G Newtons

Uscript units
1 Newton = (1Kg-uscript units * 1 Meter-Uscript units) / (1 second-Uscript units)^2
1 N = (1.0977683828808E+30 * 4.7379635940184) / (1420405751.7667 ^ 2)
1 N = 5201186632753682179840206720000 / (1420405751.7667 ^ 2)
1 N = 2577968421466.6089985935332 Uscript Force Units

(Uscript-G (1Kg-uscript units * 1Kg-Uscript units)) / 1 Meter-Uscript units ^ 2 = G N
(Uscript-G (1.097768382880E+30 * 1.097768382880E+30)) / 4.7379635940184 ^ 2=G N
(Uscript G * 1.205095422450970277094400E+60) / 22.4482990182437538962595 = G N

UscriptG * 53683150846823097138415015084817964317654304079542732686661 =G N
(UscriptG * 53683150846823097138415015084817964317654304079542732686661

= 2577968421466.6089985935332 Uscript Force Units * G
(UscriptG * 53683150846823097138415015084817964317654304079542732686661

=171.95049371182282020618866444

UscriptG= 171.95049371182282020618866444
/

 53683150846823097138415015084817964317654304079542732686661

UscriptG = 0.00320306261833360027160567780
UscriptG = 3.20306261833360027160567780E-57

This should gives a Uscript-G value for newtons equation of gravitational force. A quick check to
make sure we got this right.

Lets do 1Kg under earths gravity at the surface of the earth
Distance from Earths core at surface 6.38E+6 m
Mass of Earth 5.98E+24 kg
Newtons G 6.67E-11

Gravity on 1Kg at surface of Earth
= (1* 6.67E-11 * 5.98E+24)/(6.38E+6 ^ 2)
= 398866000000000 / 40704400000000
= 9.79908805927614705 Newtons

Ok.. we didn’t screw that up, now in Uscript units
=(1kg * UscriptG * 5.98E+24 Kg) / (6.38E+6 Meters ^ 2)
=(1.097E+30 * 3.203E-57 * 6.564E+54) / (30228207.729837392 ^ 2)
=2.306E+28 / 9.137E+14

=2.523E+13 Uscript Force Units
= 2.523E+13 / 2.577E+12 Newtons
= 9.79045401629802 Newtons

It works, we now have a functional Uscript gravitational constant.

For notation we can just introduce hex scientific notation, no need for definitions, we have all the
math already. I will not establish a a symbol for the constant G, no need for excessive symbols this
early, G isn’t used much outside the equation for gravitational force anyways, so we just need a
symbol for the force itself.

At this point I just realized I didn’t define examples of negative powers, but it is not necessary for
scientific notation, negative power scientific notation can just be divided instead of multiplied.

3.20306261833360027160567780E-57 (DEC)= 1.41B1F88B1D157F61294AE-2F (HEX)

First on top we define symbols for measuring distance. One for distance between “center of mass” and one
for “space between”. We didn’t actually define “center of mass” explicitly, so it could be “spacial center”,
“center of charge”, etc… It is definitely good enough as a general “distance between centers” for now,
specific types of “centers” can be further defined as needed. We also start using a new type of variable
symbol, the “particle variable”, which is just a variable with a dot at its beginning.

Bottom left we define a symbols for gravity as : space-time subset(force) = gravity
Next we define the value of this force using Newtons equation for gravity

gravity ≈ (1.41 / (10^2f))*(((variable A subset mass)*(variable B subset mass)) / (A distance unit B))
*all values in hex. eg.10^2f(hex) = 16^47(dec)

The Weak Force + Feynman Diagrams
I can already hear the physicists thinking “Feynman diagrams!!! why aren't you using Feynman
diagrams????” … don’t worry, here they come. I have considered what to do with Feynman
diagrams and have come to 2 conclusions:

1. They are PERFECT just they way they are.
2. The only modifications are purely “cosmetic” for uniformity of the script.

W-
nudd

p
udu ν

e e

W+
pudu

n
udd ν

e e +

Above we use a couple Feynman diagrams of the weak force in action to accomplish a few things.
1.Define a Uscript version of Feynman diagrams.
2.Describe the weak force
3.Establish that on 2 axis space/time diagrams the intersection in the top left is not needed
 if you label each axis, one space, one time.

Remember time in Uscript always flows DOWN and RIGHT, not up. We have established that we
will be reading from top to bottom and left to right so it only follows that time charts should flow in
the same direction.

The 4 Forces
Now that we have gravity defined, we can create symbols to represent the 4 fundamental forces.
The equations for the weak, strong, and electromagnetic forces are pretty mathematically intense.
They would require a ton of definitions just to be able to describe them. Like Einsteins field
equations, we will leave those for an “extended information database” and will not include them in
this “core language key”.

The 4 forces can be described by the bosons that carry them, and by their relative strength.

Above top creates symbols for the forces via the force carrying bosons
charge sub (force) = electromagnetic force
photon sub(force) = electromagnetic force
W+ / W- sub(force) = weak force AND electromagnetic force
Z boson sub(force) = weak force
gluon sub(force) = strong force

*there is no Higgs boson listed here because the higgs does not “carry gravity”

Below we have a statement that compares approximate relative strength
*from here on in I will use the standard 0x prefix on hex numbers. Easier for everyone, those not familiar with it should
just get used to it. 0x10 = 16(decimal). This way you can copy these formulas into calculator/math software and it
should recognize it. As a programmer it was hard to resist this long without using it but was trying to not scare some
people off, if you made it this far I’m sure you can handle it.

(particle A center-distance particle B) : (0x1.55 / (0x10 ^ 0x12))
subset - weak force ≈ gravity * (0x5 * (0x10 ^ 0x1A))

- strong force ≈ gravity * (0x5 * (0x10 ^ 0x1F))
- EM force ≈ gravity * (0x9 * (0x10 ^ 0x1D))

Which roughly comes out to :
“At a distance of 1 femtometer the weak force is approx 10^32 stronger than gravity, the strong force

is approx 10^38 stronger than gravity, and the electromagnetic force is approx 10^36 stronger than gravity.”

*Warning : We don’t really know much about gravity at these scales!
Newtons equation for gravity is only “accurate enough” within certain scales and ranges. So

the accuracy of this statement about gravity at this scale is not known.
So either

a)accept that gravity here is defined by newtons equation and these ratios are based on that
b)just don’t use this table and instead define the forces independently
c)skip it if you are not discussing the forces in detail this is not really necesarry

Chromodynamics

For chromodynamics first and foremost.. NO actual color
charts, or color metaphors. We have 3 types of retinal color
rods, some animals have none, some have less, some have
more. Color being “composed of R G and B” is a purely
human construct and meaningless to any animals with different
sensory configurations. Secondly I want to keep it
monochrome, so it can be carved and also read via other senses
eg. sonic or tactile.

The easiest way to define some basics of chromodynamics is
probably a simple example. We can just use the basic model
for Intra-Neutron interactions. This will allow us to define a
method for expressing the color charge values of quarks and
gluons.

On the right there is a time-line of states which demonstrates
the strong force interaction inside a neutron.

I have chosen to use the symbol for “absorb”(inverted “emit”)
instead of “combine/merge”. Seeing as Quarks have mass and
gluons don’t this is a good way to help clarify a difference
between “absorb” and “merge”. We will use absorb when there
is a merger involving 2 particles of significantly different mass,
the more massive particle absorbs the less massive particle, or
the particle absorbs the wave.

*here we are describing the effective color of the gluon.
Properly discussing gluons is much more complex and delves
into group theory. I shall skip this for now. Any civilization
that comprehends gluons to a deeper degree will also
understand this model.

Chromodynamics may seem very foreign to some. This is probably just because for everything
“above quark scales” color is always neutral. The strong force, like the weak force, doesn’t ever
“appear on our scale” the same way electromagnetism and gravity do, so we have no phenomena in
daily life to refer to. Much the way you don’t realize every pixel on screen in a grayscale image are
actually composed of multiple pixels of different colors.

Mesons
Mesons are particles composed of one quark and one anti-quark held together by the strong force.

The proton and neutron, common baryons, have 3 quarks, each with half integer spin, so they also
have half integer spin (2 halves cancel out leaving 1/2) which makes them fermions (in simple
terms they are “matter”)

The Pion, a common meson, has 2 quarks canceling out each other’s spin so their spin is 0 (in
simple terms they are “force carriers” aka bosons)

Baryons all have an even number of quarks.
Mesons all have an odd number of quarks
Baryons and mesons are both types of hadrons. A hadron is any particle composed of quarks.

The strong force not only holds quarks together to form hadrons, it also holds protons and neutrons
together to form atomic nuclei. The easiest way to describe this is:

while the protons and neutrons are experiencing the gluon interaction inside themselves
which hold them together in a “cyclical exchange of color charges”, at certain points in the cycle
the gluons turn into “virtual quarks” which can be exchanged between the hadrons.

If this doesn’t make a lot of sense don’t worry, it
is not necessary to understand the details of the
strong force for Uscript, we will generalize it all
as “one force” for most practical applications.

Just so we do have it defined properly, on the right
you see definitions of common mesons and a
simplified example of how they facilitate the
strong interaction in atomic nuclei (aka the
nuclear force or the residual strong force).

Image left : 4 simple examples of how to combine
a quark/anti-quark into a single symbol.

Image right : A simplified time-line of a proton
and neutron exchanging pions (a type of messon)

*It is technically not “correct” to think of theUp/anti-Up and Down/anti-Down as separate particles,
we could define that now, but that’s a much deeper conversation for another day, I’m keeping it as
light as possible for now.

**to fully understand this you also need to consider color charges, all the quarks in the proton,
neutron and pion have color charge, and they are cycling during this interaction, but again, lets not
overdo it, we are trying to build a language, not drown readers in complex equations and physics.

***PLEASE don’t ask me questions like “Hey, you used the star of David, does that imply you…….”. I did
NOT “use the star of David”, the “star of David” is a simple geometric design. Any symbols that resemble
religious, mystical, political, historical, or any other symbols used by people/groups are purely coincidental,
and trivial coincidences at that. It’s impossible to design simple, low complexity, elegant symbols without
overlapping such things, those groups chose those symbols BECAUSE of their simple fundamental
geometrical nature and/or ease of carving, writing with pen or compass/straight edge. 2 triangles overlapped
like this is a “natural instinct of symmetry”. None of the symbols in Uscript have any relation to ideologies,
groups, organizations, etc.. they are just composite lines, dots, and geometry.

Bonds
We are going to use the triple point of water to define temperature, so we need molecules.
Molecules are just bonded atoms, so it’s time to clearly define and use the bond symbol, until now
we have been simply grouping components into brackets to refer to composite particles.

Above we clearly define the bond symbol as being a generic “binding force” as well as establish
specific bond symbols for the strong force and the EM force. We can easily extend this later to
create a gravity bond once we get to talking about astronomy.

Line 1: quarks bonded into a proton, there are 2 example for “strong bond” to clarify the triangle
does not denote a directional element.

Line 2: proton bonded to an electron to form protium, and establish the EM bond symbol.

Line 3 : down quark bonded to an up quark to form a pion

Line 4: bonded proton, neutron, and electron to form deuterium.

Line 5: 2 protons, 2 neutrons, and 1 electron bonded to form a Helium-3 +1 cation.

As you can see there are limits to 2D representation, it would not be feasible to draw all the bonds
of a large atom, especially since all the protons attract all the electrons and all hadrons in the
nucleus are effectively bonded to each other in a “soupy mess”.

Also notice that we are not distinguishing the strong force between quarks and the strong force
between hadrons(for example pions vs gluons). If desired it would be easy enough to define 2
different strong force bond symbols, but it just seems a bit excessive at the moment.

Molecules
Molecules are easy now that we have bonds, just connect atoms with bonds. I will not use the EM
bond because for now the mechanism holding atoms together is not really the “atoms attracting
each other via EM force” , rather it has to do with electron orbitals and wave functions. We could
perhaps make a symbol for “orbit bond”, but I will leave this out for now. Details about electrons
shells, or the more advanced 3D quantum wave functions can be left for “extended information
databases”.

Just to make sure that this is clear for any reader anywhere in the universe, we will use examples of
some of the most common chemical compounds in the universe. To the the best of my knowledge
these should be some common molecules found in any region of space.

Above are 5 very simple, fundamental and common compounds.
Top left : H O H – water
Top right : 0 C 0 – carbon dioxide
Middle : A cross with carbon in the middle and 4 hydrogens bonded around it – methane
Bottom left : H H – dihydrogen
Bottom right : Nitrogen bonded to 3 hydrogens – ammonia

Seeing as water is very common and we will use its triple point to define our temperature units, it
deserves its own symbol for abbreviated usage.

Any molecule that needs to be referenced often can easily get its own symbol assigned in the same
way.

If a more efficient way of describing complex molecules is required, I would just recommend that
Dscript Chemistry Notation(Dchem) is imported.

Dchem Basic : http://dscript.org/chem.pdf
Dchem Advanced : http://dscript.org/chem2.pdf

To import Dchem just provide a few example where you define a molecule in Uscript, then equate it
with its Dchem equivalent, and perhaps first define the Dchem symbols for atoms.

Because Dchem can conflict with Uscript, it would be best to establish some kind of special bracket
or frame to indicate that a certain writing space is using Dchem molecular notation.

http://dscript.org/chem2.pdf
http://dscript.org/chem.pdf

States of Matter
The last thing needed to define temperature units is the states
of matter. We shall stick with the common 4, solid, liquid, gas,
and plasma.

There are more non-conventional states, mostly due to the
strict definition we have established for solid. Glass for
example is a non-conventional solid, this has to do with
thermal equilibrium ground states, but we shall not get into this
seeing as we wont be defining them as such yet.

On the right we define the 4 states of matter and a general
symbol for cation(an ion missing electrons).

At the top 3 examples of cations shown as subsets of a symbol
which will be used for cation. Below there are Four squares
(remember square and circle both represent “space”)

In each square at the top left you will see a gravity symbol with
its force arrow pointing down. This identifies that there is a
gravitational force being experienced in this space. Gravity is
not necessary for states of matter, but it will help facilitate our
definitions. Top to bottom :

SOLID : A crystal-like structure stands with its peak
resisting gravity, bonds are drawn between each atom to
signify that they are bonded to their neighbors and the structure
as a whole is a solid structure.

LIQUID: The atoms are densely packed at the bottom of
the space, just as a liquid would behave because liquids do not
compress but the atoms/molecules move around freely.

GAS: The atoms are distributed randomly and expand
to fill the space like a gas, I did try to make the density at the
bottom slightly higher than at the top, just so it can’t be
interpreted as “gases don’t feel gravity”

PLASMA: Cations and electrons mixed.

Our definition will be a purely visual intuitive one, the details of attempts to strictly categorize the
“grey areas” between these states is not required for our general purposes. It can of course be
included in an “extended information database”.

(3D+Atom) = solid (solids hold 3d shapes)
(2D+Atom) = liquid (surface tension produces a 2d surface)
(1D+Atom) = gas (just extending the pattern)
(1D+Cation) = plasma (gas but with cations.. and electrons of course)
*We used “subset” because our examples only use atoms, thereby not excluding molecules from the states of matter.
Applying the symbol to molecules is valid, and a single application to molecules clarifies that molecules can also have
these states.

Temperature & Pressure
Well, it was a long road to get here, but we can finally define our final base unit... temperature.

Temperature will be defined via the triple point of water, which requires pressure be defined first.
Pressure is easy to define its just force / area, but there is a small detail, specifically it’s the normal
force / area. We can probably get away with a visual definition that implies normal force with arrow
directions, but the normal force is a very common concept in physics and it’s not hard to define so it
will be added here.

Above there are 3 statements
Left : 2D subset(distance unit) = area unit = pi * (radius subset(distance unit) ^ 2)

Middle : (force into angled line and and a right angle triangle with hypotenuses parallel to
the line, and one side parallel to the force with the opposite angle marked) subset(normal force =
force * cos(marked angle))

Right : 4 arrows pointing outwards inside a space circle = pressure symbol = (force
subset(normal force) / 2D area)

The pressure symbol is a composite of 4 outward pointing arrows. The formula should clarify the
meaning and define our unit, as well ass how to produce units for area, volume, etc…

Once again we need to do a bit of unit conversion

1 Pascal = 1 Newton / meters ^ 2 (force / area)
1 Pascal = 2577968421466 Uscript Force Units / 4.7379635940184 Uscript distance units ^ 2
1 Pascal = 2577968421466 Uscript Force Units / 22.4482990182437 Uscript area units
1 Pascal = 1.148402566880853E+11 Uscript pressure units

The triple point of water is at 611.657 Pascal
611.657 * 1.148402566880853E+11 =7.024284688506419734889286E+13
7.02428468E+13 = 0x3FE2AFEE7880 ≈ 0x3.FE2*(0x10^0xB)

Ok, now to set a value for the triple point of water. Kelvin is defined as 273.16, but this was done
just to make the Kelvin unit have the same magnitude as Celsius unit.

I see no reason not to just call it 1.

Temperatures below the water triple point are less than one and temperatures above are grater than 1

Sure, this makes most temperatures we encounter in our daily life less than one. We like systems
that make temperatures we care about easy to handle, our temperature scales are all designed so that
0 is “cold” and 100 is “hot”, they are designed for the range near the human body temperature.
Human body temperature is human centric and arbitrary in the grand scheme of the universe., so we
will use 1 for the triple point of water instead.

On the right we define our temperature units

The graph is labeled as :

Vertical axis temperature (increasing downwards)
Horizontal axis pressure (increases left to right)

The graph is divided into three sections
-top section : water is solid
-lower left section : water is gas
-lower right section : water is liquid

The dot represents the triple point.

The triple point has its 2 axis values labeled

The labels are a subset symbol with extended lines
coming close enough to the point to identify that
they refer to the value of the point. The subset
symbol an be written as “Dot Subset(Value)” or
“Value Superset(Dot)”

Vertical label at top : (0x3.FE2 *(0x10 ^ 0xB)) pressure units

Horizontal label on left : 1 temperature unit

Below the graph is the the statement
0 temperature units = ((atom subset(velocity))= 0 temperature)

The graph establishes our temperature units with 1 being the triple point of water
The lower statement establishes 0 temperature units as being absolute zero

We are using a kinetic interpretation of temperature as it is the simplest. There are many more
interpretations, but this is the easiest and most likely to be the most universally obvious without
resorting to complex equations or quantum mechanics.

We could further clarify our temperature scale by defining the temperature values of the triple
points of more compounds, but one is enough I think. Sso far I have only used linear scales, we
have not done anything anywhere in our document to imply anything else, such as log scale units.
The graph section boundaries may not be perfect but that is a bit trivial at this point because we are
only discussing the triple point itself.

It would also be easy to go an extra step and define a new symbol for “triple point” via various
methods

eg. triple point = (compound = solid AND liquid AND gas)
 or (x compound subset(triple point)) subset (temp=x, pressure=y)

…. Et voila!… a full compliment of base units. We can now derive any units we want.

Uscript Astronomy
Astronomical terms will need to be defined, they are good for discussing the universe we live in and
great linguistic tools as well. We can’t just define stars as “shiny twinkle things in the night sky”
because we can’t assume the reader has the experiences of “sky”,” shiny”, or “night”, so physical
properties and mechanisms will be how we define astronomical terms.

Stars & Fusion

First line We clarify that the top row of the truth table is the first variable and the second row is
the second variable. This way we can create FIRST-GATE and SECOND-GATES
gates. Eg FIRST-GATE means “require first variable, second variable optional”,

Second line (C02)subet of molecule symbol water subset of molecule symbol
Also 2 versions of molecule symbols. For ease of use it can be rotated 90 degrees

Third line molecule subset(bond subset(force)) = electromagnetism
atom subset(bond subset(force)) = strong force FIRST-GATE electromagnetism
proton subset(bond subset(force)) = strong force

Fourth line *new symbol “compound particle”, will use for things like “system” and “body”
system subset(molecule) system subset(atom) system subset(proton)
(system subset(bond subset(force)) = gravity) = “astronomical body” system

*any system held together by gravity is an astronomical body in Uscript
Fifth line (force + atom + atom = atom) = fusion

(force + deuterium + tritium= (helium-4 neutron)) is a subset of fusion

Sixth line (astronomical body subset(fusion subset(force = gravity)) = star symbol

This has clearly defined stars: a gravity bound body fusing atoms with gravitational force is a star.
*technically one could argue black hole fuses atoms, and I suppose they do, but our definition of fusion states

that the product of fusion is an atom, which eliminates black holes as far as I know. We will define black holes
separately so this is not a problem, they have plenty of unique identifying properties. But still, technically if you can
find examples of black holes using gravity for fusion, then Uscript says they are stars.

Planets, Moons, Asteroids, etc…
We could define “all astronomical bodies with 0 gravitation induced fusion” as planets / meteors /
asteroids / etc.. but that would not be a very useful category. To be honest asteroids vs. meteors vs.
comet are hardly that relevant universal distinctions.

Instead we will create several categories based on 3 qualities.
1. Spherical – being large enough for gravity to force the object into a spherical shape (this criteria
is currently on of the prerequisites for our current definition of planet.
2. Orbiting a star – Orbiting a star
3. Orbiting a non-star

This will create 8 major (as well as some parent categories)
Spherical Stellar Orbiters Non-spherical Stellar Orbiters
Spherical Free Bodies Non-spherical Free Bodies

Spherical Orbiters of Stellar Orbiters Non-spherical Orbiters of Stellar Orbiters
Spherical Orbiter of Free Body Non-spherical Orbiter of Free Body

Spherical Stellar Orbiter is basically a planet.
Spherical/Non-spherical Orbiters of Stellar Orbiters are basically moons.
Oumuamua is a Non-spherical Free Body

Some of the other categories are not very commonly used, if at all (eg. it’s not often we discuss non-
spherical moons of rogue planets) but this gives us clear categories that will serve our purposes, and
who knows, maybe there is life on rogue planets traveling through intergalactic space who talk a lot
of “Free Bodies” and their orbiters. The term “spherical” will require some more math concepts and
functions.

Top line : 1 ^ 0 = 1 7 ^ 0 = 1 0xFFF ^ 0x0 = 1
Second line : 1≠2 4≠9 0x4.001≠4 0x4.001≈4
Third line : Sum(a,b,c,d) = a+b+c+d Sum(1,2,10,6) = 0x13 (dec 19)
Fourth line : Count(a,b,c,d) = 1+1+1+1 = 4 Count(1,9)=2
Fifth Line : (a=(3,5,12) Sum(a)=20 Count(a)=3)

This now gives us clarification that “anything to the power of zero” equals 1, a new symbol for “not
equal to”, the ability to use arrays, a Sum-Array function, and a Count-Array-Elements function.
Just a few more definitions and we can use expressions to define spherical.

*I have intentionally avoided drawing a sphere wire-frame. I do not want to go down the
road of drawing complex pictures. I want to keep everything as simple and 2D as possible. We have
used a few graphs, but thats as far as I want to go. I only made the exception at the very beginning
where I used a cube and tesseract wire-frame to define our X-dimensional radical.

Top Line : Sum(a) / Count(a) = Mean(a) (a=[1,9,2] a^2=[1,81,4])
Second line : Standard-Deviation(a) = (Mean(a^2) - (Mean(a)^2)) Square root
Third Line :

a+a=a a^a=a a=3D-Cubic Sub(Count(2D Space)) a=Infinity symbol =Infinity symbol
a*a=a

Fourth line : 2D-Circle Sub(Count(diameter))=3D Sphere Sub(Count(diameter)) = infinity
(3D sphere Sub(Standard Deviation(Diameter)=0)) = Perfect Sphere
(3D circle Sub(Standard Deviation(Diameter)=0)) = Perfect Circle

Here we have defined some basic statistics functions and and defined the concept of infinity. Using
these 2 terms we have essentially said “There are infinite 2D sub-spaces in a 3D space”, “Circles
and spheres have an infinite number of diameters to measure”, and “If all the diameters are the same
it is a perfect Sphere/circle”

*Technically when we defined circle and sphere we implied “perfect” with the area and volume
equations, I will probably just change those definitions to be “approx” instead of equals.

*I thought long and hard about trying to make a simple and elegant symbol for infinity. I do not
think our current one is intuitive, and it can possibly be mistaken for 2 circles if drawn to small or
messy. In the end I landed on this one because it can at least be argued to be a combination of
radicals that have a relatively intuitive meaning that could be implied to mean infinity. The parent of
a subset of a subset of a subset could be extended to mean “parent of everything”, we will not use it
like that though, just as the mathematical term infinity. I also made it 3 levels because I think I may
want to use the second tier subset concept later, symbols for arbitrary levels will be done with
numbers though. Akin to the way English has parent, grandparent, and then just add “great great
great”

*I went straight to standard deviation and skipped variance, the same way we use sigma, just square
it to get variance.

astro-body = A-body = astronomical body S-Orbiter =Star-Orbiting
P = particle Fbody=Free body=Astrobody not orbiting any stars non-speherical = Nsphere

Top line: (astronomical body ≈ perfect sphere) = spherical astronomical body
 (invert(astro-body ≈ perfect sphere)=TRUE) sub(astro-body=non spherical astro body)

Upper Left (particle-orbit-star sub(particle=astro-body))sub(particle = star-orbiting-astro-body)
=astro bodies that orbit stars

(P-orbit-star sub(particle=sphere-astro-body))sub(P = star-orbiting-sphere-astro-body)
=spherical astro bodies that orbit stars (planets)

(P-orbit-star sub(P=Nsphere-A-body))sub(particle = S-Orbiter-Nsphere-A-body)
=non-spherical bodies that orbit stars (asteroids etc..)

Upper Right (P-orbit-A-Body sub(A-body=S-Orbiter-A-Body))sub(particle = S-Obriter-Abody-Orbiter)
=astro bodies thats orbit astro bodies that orbit stars = moons / astro body satellites

(P-orbit-A-Body sub(A-body=S-Orbiter-sphere-A-Body))sub(particle = S-Obriter-sphere-Abody-Orbiter)
=spherical astro bodies thats orbit astro bodies that orbit stars = spherical moons / satellites

(P-orbit-A-Body sub(A-body=S-Orbiter-Nsphere-A-Body))sub(particle = S-Obriter-Nsphere-Abody-Orbiter)
=non-spherical astro bodies thats orbit astro bodies that orbit stars = non-spherical moons / satellites

Lower 4 lines (A-body orbiting 2 stars)sub(A-body sub(P-orbit-star sub(count(star)=2)))
(A-body passing but not trapped by stars) sub(A-body) = A-body sub(P-orbit-star sub(count(star)=0)=Free body

left line 3 sphere-A-body sub(P-orbit-star sub(count(star)=0)) = spherical free astro body =rogue planet
left line 4 Nsphere-A-body sub(P-orbit-star sub(count(star)=0)) = non-spherical free astro body
right line 3P-orbit-A-body sub((P=sphere-A-body)AND(P-orbit-star sub(count(star)=0)) = sphere moons/satellites of Free bodies
right line 4P-orbit-A-body sub((P=NsphereA-body)AND(P-orbit-star sub(count(star)=0)) = Nsphere moons/satellites of Free bodies

Galaxies
Galaxies are a bit arbitrary, but still obvious observable astronomical bodies.

Galaxies are clusters of stars bound by gravity, but this becomes hard to define clearly. How many
stars constitute a galaxy? surely 2 stars in a binary star system do not count. 100? 1000? 10000?
etc.. I have seen it defined as “millions or billions of stars” which is still arbitrary, 999,999 is not a
galaxy?

We are not sure, we think nearly all galaxies have a super massive black hole at their center, but it
seems that according to models it is not required that there be super massive black holes at the
center of all galaxies. So we cant use that as part of the definition. So the Uscript definitions will
differ from our common definition somewhat.

Top line : particle orbiting star sub(particle bond star) sub(bond=gravity bond)
*”the bond between a solar satellite and and the star is a gravity bond”

astronomical body sub (galaxy symbol)
*a galaxy is a subset of astronomical bodies

Mid section:
left : (many stars gravitational bound to a common center) = galaxy symbol
right : galaxy sub(spiral galaxy) galaxy sub(elliptical galaxy)

spiral galaxy = 2D galaxy elliptical galaxy = 3D galaxy

Bottom line : (galaxy approx 2D) sub(galaxy = spiral galaxy)
(galaxy approx 3D) sub(galaxy = elliptical galaxy)

Here we have defined
A galaxy is any cluster of stars gravitationally bound to a common center.
There are (at least) 2 sub categories of galaxy, spiral/2D and elliptical/3D

There are 2 symbols for each type, I was a bit reluctant to create double symbols for a single
concept, but it does help with the definition, 1 version of the symbol graphically depicts the
spiral/round shape, and the other uses their dimensionality (Spiral galaxies are flat and elliptical
galaxies are 3D spheroid)

I will, for now, refrain for using “star count” in the definition, it’s just so arbitrary. So in Uscript you
can argue that a binary star system is a galaxy. The visual definition had an empty center so this has
been left open too, all we require is an astronomical body composed of stars.

Black Holes
Black holes can be defined via the Schwarzschild radius.

Schwarzschild radius = (2 * G * Mass) / speed of light ^ 2

Uscript speed units are by definition the speed of light due to our base units being based on a
photon (distance a photon travels / time it take it to travel). This make the equations surprisingly
simplified. (in other words our speed unit is a natural unit)

Schwarzschild radius = 2 * Uscript-G * Mass / 1 ^2
Schwarzschild radius = 2 * Uscript-G * Mass

We can eliminate the speed of light from the equation because the speed of light in Uscript is 1.

Lets try this with the super massive black hole in the Andromeda galaxy to test it out
SMBH-Andromeda

Mass = 3.4*(10^38) Kg
Schwarzschild radius = 5*(10^11) Meters
Mass Uscript = 3.4*(10^38) / 9.109*(10^-31) Kg = 3.7325*(10^68)

2 * (3.203*(10^-57)) * (3.7325*(10^68)) = 2.391 * (10^12) Uscript distance units
2.391 * (10^12) * 0.211 = 5.045*(10^11)

Yup, it works. Now lets define a black hole

Top line : 1 superset(2) 1 superset(3) 1 superset(F) E superset(F)
2 subset(1) 6 subset(7)

*this should be sufficient for “a smaller number is a subset of a larger number and a larger number is a superset of a
smaller number” allowing use to use subset superset as less-than and greater-than

Second line : (a superset(b)) = (b subset(a)) = a superset b = b subset a

*this creates a simpler way to use the symbol. I have retroactively used this in the definitions for isotopes and ions, so
this definition should be moved up into the early math section of the key. I may deprecate this usage later though.

Third line : Spherical astro body subset (diameter < 4 * Mass * Uscript-G) = Black hole symbol

*this defines a black hole as a type of spherical astro body with a diameter smaller than 2*Schwarzschild radius(they
appear and are spherical for all measurable and observable intents and purposes). I tried very hard to come up with a
good symbol, but nothing worked, so I used one that is essentially a combination of 4 inward pointing arrows, akin to
how we made the pressure symbol. I will not define the symbol as such because all astro bodies have gravity. I didn’t
want to start referencing singularities or other approaches, so we can just consider it arbitrary symbol.

Fourth line : ((photon distance blackhole)<blackhole sub(Schwarzschild radius))=blakhole absorb photon

*in other words “a photon within the Schwarzschild radius is absorbed by the black hole.”. This is just for extra clarity
of definition and not necessary.

Neutron Stars
We may call them stars, but the truth is neutron stars don’t really fall into the Uscript definitions of
star. Neutron stars are more like giant atoms. We define stars in Uscript as “astronomical bodies that
fuse atoms with gravity”, and you could say that during the formation of a neutron star all the atoms
are fused into one giant atom, but once it is formed there isn’t really much fusion going on to speak
of. I suppose you can argue that “all atoms falling into a neutron star will fuse with it, so there is
fusion always going on”.

Our current model of neutron stars also expects there to be a shell of ionized atoms on the surface,
which one would imagine can fuse. But this is much different from the fusion going on at the core
of “normal stars”, and since most of this “fusion” is fusing with the star itself, its a real stretch to
argue this. In Uscript we won’t bother with this debate, we will avoid, the definition of whether a
neutron star is a subset of star, and define it directly as a subset of astronomical bodies. I leave
classifying it as a subset or not a subset of “Uscript star” open to debate for now.

Defining a neutron star is surprisingly simple. While they can vary slightly from one to another,
they have a limited mass range, and limited ratio of neutron to proton composition (yes, we expect
there to be a certain non-zero amount of protons and electrons).

Top line : Astro body superset(neutron star) angle superset (various angles) angle=angle
*Here we create a symbol for neutron star and a general symbol for angle using some angles we defined previously
Large subset of Neutron star :

First line : (count(neutron) / count(proton)) > 16 *more than 16 neutrons per proton
Second line : (0x1B*(0x10^0x32)) < mass < (0x5*(0x10^0x32))

*mass between 1.2 solar mass and 3.5 solar mass (roughly)
Third line: a=mass spin sub(axis) b=charge spin sub(axis) c=(system-a line neutron star) sub(line)
Fourth line : system-a absorb (neutron star radiate energy) = d+((sin(b angle c)^e)*f)

*by varying d,e,and f you can create any pulse amplitude by rotating the angle from magnetic pole
Fifth line : (((system-a absorb(neutron star radiate energy))-d)=0) =

(((a angle b)=0) AND-OR ((a angle c)=0))

These statements basically say “A neutron star has at least 16 time more neutrons than protons, its
mass is between 1.2 and 3.5 solar mass, observers can see increased brightness when aligned with
the magnetic pole, and if observers only see a baseline brightness then the magnetic pole and
rotational pole are aligned and/or the observer is aligned with the rotational pole.”

Evaluations, Comparisons, Conditionals & Loops

Before I move on to more complex concepts like Entropy and Life we will need more tools for
expressing complex logic and procedural processes. These not only enable us to describe a
processes better, they also enable more mathematical expressions and greatly abbreviate some
definitions that would require many more lines and graphics to express otherwise.

First and foremost we require boolean evaluations and comparisons. A bracket with a dot or circle
in the bracket line indicates that this is an evaluation, not a descriptive expressions. The Dot or
circle represents that we are going to reduce this expression to True or False.

Top line : eval(1)=TRUE eval(0)=FALSE
eval(1=1)=TRUE eval(1=0)=FALSE eval(0=0)=TRUE

Second line : eval (0<1)=TRUE eval(1<2)=TRUE
eval(5<2)=FALSE eval(5>2)=TRUE eval(2<2)=FALSE

Third line : invert eval(1) = inv-eval(1) = FALSE inv-eval(5<2)=TURE
inv-eval(5>2)=FALSE eval(0x1.001 > 1)=TRUE

Bottom :
Left : (a=2) sub(b=0) eval(c=d)=eval(0=0)=TRUE
Middle : (a=1; eval(a=b)=eval(1=0))
Right : (a=1; c=7) sub(a=1, b=0, c=7)

The first lines give use an evaluator bracket, all non zero values are true and zero if false. The
equals symbols inside the evaluator bracket is an equality comparison (== in C programming).

The second line gives us greater-than and less-than comparisons

The third line give us an inverted evaluator which gives us easy access to not-equal-to, greater-than-
or-equal-to, and less-than-or-equal-to (!=, >=, <= in C)

The bottom sections establishes that undefined variables are zero. (if want a NULL, that can be
done, but I’m not gonna bother for now as it is not necessary and I don’t need it for this doc)
Now that we have evaluations we can create conditionals

*I am using C programming format here, thats why there are extra semi-colons and other notation.
Also C has no XOR so I’m using “^^” and if(!x) for inverted-eval(x).

Top line : (if(1){a=2;}) = (a=2) (if(0){a=2;}) = ()*empty brackets, nothing occurs

Second line : (a=1; if(0){a=2;}) = (a=1;) (if(0){}else{a=2;}) = (a=2)

Bottom :
| a=0; b=1; | | a=0; b=1; | | a=0; | | a=0;
| c=b*2; | | c=b*2; | | b=1; | | b=1;
| if(a){d=1;} | | if(0){d=1;} | | c=2; | | c=2;
| if(!a){e=3;} | = | if(!0){e=3;} | = | e=3; | = | e=3;
| if(b&&a){f=0xF;} | | if(1&&0){f=0xF;} | | f=5; | | f=0x0F;
| if(b^^e){f=5;} | | if(1^^0){f=5;} | | f=0x0F; | |
| if(b&&a){}else{f=0xF;} | | if(1&&0){}else{f=0xF;} | | | |

This gives a nice set of conditionals.

I have not defined a method for doing a full IF(a){b}ELSE{c}. this could be defined several ways,
but for now we can juts make 2 statements by combining an IF with an IF-ELSE(“if subset with
empty circle” instead of dot at the 3 line intersections) or combining an IF with an INVERTED-
EVAL-IF.

We have also defined how operations are executed in sequence, how variables are overwritten, and
reinforced a few principles I felt might benefit from extra clarity. Some may feel there are potential
operations and combinations that are not clear enough, I think this is more than enough to say it is
“clearly defined” but it can always be expanded with more examples.

Well…. Seeing as we have this much, there is no reason not to give it full programming capability,
for that all we need is loops (yes, goto would work too, even with loops adding a format for goto is
arguably very useful.. but I shall leave that out for now)

Top section : a=4; | | a=4; | | a=4; | | a=1;
b=2; | | b=2; | | b=2; | | b=12;
while(a>1){ | | a=a-1; | | a=4-1; | |
 a=a-1; | = | b=b*a; | = | b=2*3; | = |
 b=b*a; | | a=a-1; | | a=3-1; | |
 } | | b=b*a; | | b=6*2; | |

| | a=a-1; | | a=2-1; | |
| | b=b*a; | | b=12*1; | |

Bottom line : (while(1){a=a+1;}) = (a=infinity)

The top example should make loop programming logic perfectly clear, more examples can be added
to reinforce the principles or add more optimizations, but this more than enough for now. The
bottom line just reinforces the meaning of our infinity symbol. As you can see, now that we have
loop logic we can discuss many more abstract concepts and math formulas.

Just for good measure I’ll also add array element referencing,

Left : (a={3,5,12};) = (a[1]=3; a[2]=5; a[3]=12;)
Right : (a={3,5,12}; b=(a[1]) + (a[2])) subset (b=8)

This defines how to refer to array elements.

I have not defined how to refer to particles, variables, and array elements above more than 15, there
are various ways to do it which can be defined later should it be needed.

**yes I know.. “Bad programmer!”.. I don’t start with element 0.

Entropy
The entropy axis of the time/entropy symbol has not yet been adequately defined. Time is clear, but
we have not ensured that the horizontal entropy axis meaning is clearly defined. Entropy will be
needed for higher level definitions, like life and intelligence, so first we must clear this up. First a
few things to help us with out definition. Specifically energy units, matter energy equivalence and
photon energy calculation because we want to discuss systems and energy.

Top line : force * distance = energy
1 mass sub(energy = (1 speed of light ^ 2)) = (1 mass sub (energy=1))

Bottom line : 1/(cycle sub(1 circumference) sub(time)) = frequency
photon sub(energy=frequency * (0xC.A225/(0x10^0xA)))

A quick test of these…
1 Joule = 1 Newton*Meter 1kg = 1 * (3E+8m/s)^2 1kg = 9E+16 Joules
1kg = 1.097E+30 Uscript mass units
1 Newton = 2.57796E+12 Uscript Force Units
1 Meter = 4.73796359 Uscript distance Units
1 Joule = 2.57796E+12 * 4.73796359 = 1.221E+13 Uscript energy units
mass = energy so… 1.097E+30 / 1.221E+13 = 8.9844E+16 Joules

Ok.. Now photon energy
Planck constant (h) = 6.626E-34 Joule Seconds
1Hz photon = 1 * 6.626E-34 Joules = 6.626E-34 Joules
1Hz = 1/ 1.4204E+9 Uscript time units = 7.04E-10 Uscript frequency units
7.04E-10 * Plank constant = 6.626E-34 * 1.221E+13 Uscript energy units
7.04E-10 * Plank constant = 8.0903E-21 Uscript energy units
Plank Constant = 8.0903E-21 / 7.04E-10 = 1.149E-11

(Arbitrary) UV photon frequency = 7.8E+14 Hz
UV photon energy = 6.626E-34 * 7.8E+14 = 5.1682E-19 Joules

(Uscript 1hz in feq units * frequency)*Uscript plank constant = Uscript energy units
(7.04E-10*7.8E+14)*1.149E-11=6.3093E-6
6.3093E-6 Uscript energy units / 1.221E+13= 5.167E-19 Joules

Uscript plank constant in Hex : 0xC.A225C1682C16/(0x10^0xA)

Yup. That works too. So that is the Uscript plank constant, and we can use 1 instead of c^2.

Next we define “Entropy”. This section could be a source of contention, but please remember, we
are not trying to define entropy exactly as we define it currently, the Uscript term we are creating is
just best translated as entropy, it’s not meant to be exact.

*notice I did not use e=mc^2, and instead say “mass sub(energy=c^2)”. While there is an energy to
mass equivalence, and you could get away with saying “all mass is made of energy”, you cannot
say “all energy composes mass”. **debatable, I suppose, let’s not get into it now.

Entropy is a tricky one to define, the majority of people know the word but have a foggy or even
misinformed understanding of it. We usually define it using thermodynamics. Uscript will take a
slightly different approach. Introductions to entropy usually start with some examples, and so will
we, but we’ll use some different types of examples.

Top line : system sub(bonded molecules) system sub(bonded particles) system sub(bonded systems)
system sub(astronomical body) system sub(star + orbiter / solar system)

*here we expand our examples of system to clarify how broad the term is
Second line

left : (past particle energy=a, future particle energy=b)
sub ((a>b)=particle entropy increase, (a<b)=particle entropy decrease)

diagonal : A neutron decay time-line showing entropy steps when decay occurs
Third line: (past system-a sub(volume=a, energy=b), future system-a sub(volume=c, energy=d)) sub{

 if(a<c) and if-not(b<d)) system-a entropy increase *volume increase energy not increase
 if(a>c) and if-not(b>d)) system-a entropy decrease *volume decrease energy not decrease
 if-not(a<c) and if(b<d)) system-a entropy decrease *volume not increase energy increase
 if-not(a>c) and if(b<d)) system-a entropy increase *volume not decrease energy decrease
 }

Bottom Line : if(if(system sub(particle interact particle) and if-not(system radiate OR system absorb)))
then{system entropy increase}

The bottom line is perhaps one of the most important for our future definitions and perhaps the most
controversial. Assuming that all interactions within a system lead to its entropy may seem intuitive
(to me anyways), but this can start a wild debate, especially when discussing the strong force or
gravity. Eg. proton decay is still debatable, protons have internal interaction, but we are not certain
they ever decay naturally.

Please understand that this is NOT entropy as you may know it, this is a NEW TERM. It is very
similar to entropy, but it also carries the meaning of “the natural internal progression of a system
without external interactions”

Possibilities
Our expressions are starting to get complex and even a little abstract now so we need a way to
discuss things in a less determinate way, “is equivalent to” and “is a subset/superset of” are no
longer enough, we need to be able to say things like “is possible”, “is undetermined”, “could be one
of x possible states/outcomes”. For this we will use the wave symbol to represent
undetermined/unknown and the particle symbol to represent determined/known.

This may seem like a direct use of quantum mechanical concepts, and it definitely fits the QM language to some degree, but waves
are not restricted to quantum mechanics, fluids have waves, there are pressure waves, there are even gravitational waves, and all of
them have a similar trait, namely “their form/density/intensity/etc.. changes as they propagate through their medium, time & space”,
whereas particles, like a proton, “maintain most of their characteristics as they travel through a medium, time & space” (eg. waves
usually expand and disperse over larger and larger areas/volumes, particles maintain their density and volume). We will draw off
these properties, particles are “fixed/known” and waves are “fluid/unknown”.

Top line : (inv-eval(a=1)=TRUE) = (a not-equal 1) = (a not-equal 1)
 (a!=1)sub(a is a subset of “wave”) *”wave” can represent undefined/unknown

Second line : (a+3=10) sub(a is a subset of “particle” a=7) *”particle” can represent defined/known
(a+b=10) sub(a is a subset of “wave”) *a could be anything so it is unknown

*next I will introduce a symbol for (im)possibilities. It is drawn as a combination of “wave subset particle”
implying it a “known subset of a wave/space” in other words “a (im)possible state”. The symbol is defined in the
examples so i’s not necessary for the symbol or for it to be intuitive, I just like to make them as symbolic as I can.
Third line : (a=2) sub(a is known, a sub(count(possibility)=1), a possibility=array(2))

(a=proton XOR neutron) sub (a is unknown, a sub(count(possibility)=2),
a possibility = array(proton, neutron))

Fourth line : (a!=5) sub(a sub(count(possibility)=infinity-1), a impossibility = array(5)
 a sub (count(impossibility)=1), a possibility sub(5))

(a=photon) sub(count(a possibility)=1, count(a impossibility)=infinity-1
(a impossibility) superset(neutron), (a impossibility) superset(2 photons))

*Yes, I know infinity-1=infinity, here we only write that to express “everything/every possibility except 1”.
**Remember, the particle-dot and space-circle are also used to represent charge/lack of charge, it is that meaning we are
drawing from to create the symbols for possibility/impossibility.

Times, Periods & States
Before we can finally move on to life we need to be able to discuss some time and state related
concepts.

Above we have have a simple time-line on the left.

There are 2 time points labeled and one time period labeled as being 1 Uscript time unit long.
On the right in the subset (left to right in vertical stacks):

Leftmost : we define a symbol for “time point” and declare that a and c are subsets of it
next we define a symbol for “time period” and define b as a subset of it
below we state that “a time-interval b = 1 Uscript time unit”

Second : a sub (period-start = a) a sub (period-end = a) a sub (time-line = 0 time units)
Third : b sub (period-start = a) b sub (period-end = c) b sub (time-line = 1 time units)
Rightmost : c sub (period-start = c) c sub (period-end = c) c sub (time-line = 0 time units)

These allow us to discuss time periods and their ranges. It also allows us to refer to specific points
in time and distinguish them from periods of time. This also gives us symbols we can use for
start/begin and end/finish (period-start/period-end).

*we borrowed the same structure that we used for measuring distance so it shouldn't need definition

Previously we have been drawing states inside the time period window, this has been easy to do so
far because we never give concrete times eg. for neutron decay we drew states and processes inside
time period windows, but because we never labeled each window with a time frame we so didn’t
need to be precise, know how long the process took or how long a specific state was maintained.

Above there is a time-line with 3 periods and 4 time points labeled. The 3 periods all have different
lengths of 2 time units, 7 time units, and 4 time units.

Below the time-line there are 2 symbol equivalences, these are just to make them easier to draw.

On the right in the subset : (left to right in stacks)
First column: a before b, a before c, a before d, a before e, a before f, a before g
Second column : b after a, c after a, d after a, e after a, f after a, g after a
Third column : d before f, d before g, d after b, d after a
Fourth column : (b+d)sub(start = a) (b+d)sub(end=e) (b+d)sub(time-line=9 time units)

(a to/time-arrow g)sub(time-line=13 time units)
Fifth column : e time sub(a to g), b period sub(a to g), e time(b to g), d period sub(c to e)

*notice there is no “a before b” or “b after a”, this is because in graphic before this we defined that b sub(start=a). For
the same reason there are no refers to “d-c” and “d-e”, because “c starts d” and “e ends d”.

This gives us terms for before, after, and during for time points and time periods. There are a couple
more things things that can be defined, like “time-period to time-period” and evaluations like “if a
is before b”, “eval(b is during c)” etc..., but this is enough for our current purposes and those are
rather intuitive, they can be added when needed.

Next we move on to stages, these are the entropy line equivalent of time-periods, but instead of time
ranges they refer to “state range”.

When a system is in a specific configuration, or composed of a specific set of particles/sub-units, or
has certain characteristics, this is a “state” in Uscript.

When a system holds an approximate “state” over time with changes or fluctuations that are
insignificant to the definition of that state, this is a “state-range”.

Top left there is a time-line with periods labeled on the left.
Right subset of time-line

First line : a state = Proton c state=(proton emit W+) e state=(neutron emit W-)
Second line : c state decrease-entropy b state

*in other words “going from c to b decreases entropy” or “state c has less order than state b”
c state entropy-increase a state
*in other words “going from c to a increases entropy” or “state c has more order than state a”
f state entropy-decrease state e

Third line : b state precedes c state d state succeeds c state e state succeeds c state
Fourth line: e state = a state (a state precedes b state)=(e state precedes a state)

*This line will probably get deprecated. It was meant to divorce states from time but it is
perhaps better to create a new symbol for that. The reasoning for it was “there can be near infinite intermediary states
and we don’t want to have to always reference them all when saying before/after”

Fifth line : a state-sequence c = array(proton, proton absorbs energy, proton emits W+)
*this gives us a way to handle state sequences with our array handling tools

Bottom : (3d spherical space sub(diameter=infinity))=space-infinity *in other words “universe”
 preceding-state sub(Universe decrease entropy)
 preceding-state sub(Universe increase entropy)
 preceding-state sub(before) proceeding-state sub(after)

The bottom section is not necessary but it is meant to justify/clarify 2 things
1.The reasoning for preceding and proceeding state using the entropy line is that states

changing may not imply system entropy but it does imply entropy of the universe.
2.We may divorce states from time in some ways, but a preceding states still always happen

first, succeeding states always happen after.

Life-lines
No, we have not come to defining “life” yet, this section is just about life-lines, as in “during the life
of this proton it interacted with….” or “the life of a star”. A Uscript “life-line” is just a series of
states over periods that make up the time-line of a system.

A life-line always has a beginning, an end, and at least 1 period/state. The end can be undefined but
they still have have one with a value of undefined.

In this example 2 systems combine to form a new system, which exists for a few periods/states, and
then divides into 2 systems.

In some cases 1 system may become 2 systems but you may want to still consider the original
system to be one of the 2, in that case it is best to use radiate instead of divide. In the case of, for
example, human cell devision, I would argue it is division, and the 2 new cells should be considered
new systems, I suppose you could argue that one is the original system by using some logic along
the lines of “I am following one side of the DNA strand, so one is an original and one is a copy”.
*I have doubts that the “same side of the DNA can be followed” like that, but I’ll leave that debate to experts.

On the left there is a time-line with a periods and time points labeled.
On the right there is a large subset with statements about the time-lines

First line : system-c b state = system-c sub(b state) = b sub(system-c state)
Second line : system-c time-line=system-c sub(time-line)=g to k=(b+c+d+e) sub(time-line)
Third line : system-c life-line = array(system-c b state , system-c c state,

 system-c d state, system-c e state)
Fourth line : system-c first-state=(system-c b state) system-c last-state=(system-c e state)

system-c last-state=(system-a a state)
Fifth line : system-c start = g system-c end = k

system-a end = g system-e start = k
Sixth line : system-a start is unknown system-b start is unknown

system-d end is unknown system-e end is unknown
system-c end is known

How you define a system is completely open, the difference between a system ceasing to be the
same system and a system that is just in a different state is rather arbitrary. Am I the same system I
was last year? If you replace all the parts on your car is it still the same system? This is a question
for philosophy, and when we reach the realm of philosophy Uscript backs off and says “arbitrary!”.
It is up to the user to define this, which usually depends on the context of the matter at hand, eg. if I
am referring to our sun in the context of stars in general, it may cease to be the same system when
fusion halts/becomes negligible, but in another more specific context it may cease to be the same
system when it expands into a red giant or when its core fusion starts producing a certain element.

Expansion, Contraction, Explosion & Implosion
We will want to discuss life and growth so the concepts of expansion, contractions, explosion and
implosion will be very useful. We will define these quite simply as exponential and liner changes in
volume. Expansion and contraction are linear, and explosion and implosion are exponential. If you
film an explosion (anything from dynamite to a supernova) and slow down the playback speed
enough, it looks just like a slowly expanding ball, so using a speed or rate is arbitrary, thats why we
categorize based on linear/exponential.

I want to use comparison of positive and negative numbers, sub/super set are the greater-than less-than. 2 is a subset of
3 because 2+1=3, but if you allow negative numbers this logic breaks down, we COULD just define “1 sub(-1) , -2 sub
(-3), etc..”, but the subset symbol we use is also used for general purposes, in what way is “an anti-electron less-than/a
subset of an electron, but an electron greater than/a superset of an anti-electron”?.. so this approach just “makes my
brain itch”. Lets deal with this number line problem before we begin.

Line 1: absolute(-1)=1 absolute(2)=2 absolute(7-15)=8
Line 2: eval(a signed-less-than b) = eval((abs(a) + abs(b) + a) less than (abs(a) + abs(b) +b))

First line : (a^(-b)) = (1/(a^b)) *here we add negative exponents
Second line : (a possibly sub(b)) = a possibility(b) (a impossibility sub(b))=a impossibility(b)

*just a more efficient way of writing about possibilities
Middle Section : system-a sub(time-period sub(

 period-start system-a volume = a
 period-start < b < period-end
 b sub(volume) = (((start time-distance b)^c)*d)
))

Bottom sub-section of the time-period statements:
 Line 1 : possibility((c=1)AND(d>0))=(period state) super(volume expansion)

 possibility((c=1)AND(d<0))=(period state) super(volume contraction)
 Line 2 : possibility((c>1)AND(d>0))=(period state) super(volume explosion)

 possibility((c>1)AND(d<0))=(period state) super(volume implosion)
 Line 2 : possibility((0<c<1)AND(d<0))=(period state) super(volume reverse-time-explosion)

 possibility((0<c<1)AND(d>0))=(period state) super(volume reverse-time-implosion)

The symbols for expansion and contraction show states changing between a particle and a system,
this symbolizes something small and something larger but contained.

The symbols for explosion and implosion show states changing between space and a particle, this
can be interpreted as “an explosion leaves only space behind” or “an explosion expands so much
that the resulting system has negligible density” or “an explosion radiates everything away leaving
only space”. The same logic works in reverse eg “an implosion condenses a system so much that if
it’s new state is seen as a particle, it’s previous state was empty space by comparison”

These symbolic representations are because I try to fit symbolic representation and intuitive meanings as much as
possible but they could be arbitrary symbols. They are not part of the definition, the definition is in the equations.

The image below uses non-Uscript graphs(our standard graphs on earth, time is horizontal, value is
vertical) it is just for readers of this document. If you wanted to include it in a Uscript key you
would need to use the Uscript graphs and make them subsections of their respective symbols.

Expansion Contraction

Explosion Implosion

Reverse time
Explosion

Reverse time
Implosion

“Time reversed” just means “from a backwards time perspective”

If you take an explosion and flip the time axis (horizontal axis in the above graphs) it will look like
a “Time reverse explosion”.

This gives us access to 6 types of curves.

S curves can be created by combing 2 curves.
Spikes can also be created by combining 2 curves.

If you wanted to describe a specific curve, simple or complex, you would need to do the same as we
do now, in other words either draw the curve on a graph or describe it with an equation.

Birth, Death, and Events in between
Now we can put together the concepts we have created to make some pretty complex and more
linguistic statements, let’s try discussing birth, death and life-events.

First line : (a explosion) = (a sub(volume explosion))
(a volume explosion) = (a sub(volume explosion))

*this first line clarifies that explosion means volume by default
Second line : (a mass explosion) = (a sub(mass explosion))

(a velocity explosion) = (a sub(velocity explosion))
*this line shows how to use curves to describe other properties

Third line : (particle-a distance explosion particle-b)=(particle-a sub((distance particle-b) explosion))
*another example, this one is how to use curves to describe changing distances

Fourth line : star birth possibility (gas implosion sub(force=gravity))
*”a star can form from gravitationally collapsing gas”

star birth possibility (star merge star)
*”a star can form from merging stars”

Fifth line : star death possibility((star explosion) before (star implosion) before (black hole))
*”a star can die in an explosion, then implode into a black hole”

star death possibility((star explode) before (star explode) before (neutron star))
*”a star can die in an explosion, then implode into a neutron star”

Sixth line : count(star life possibility(state))=infinity
*”there are infinite possible states/events in a stars life”

star life sub(state) possibility(star absorb astronomical-body)
*”a star can eat/absorb an astronomical body”

star life sub(state) possibility(galaxy radiate/emit star)
*”a star can be ejected from a galaxy”

These examples all deal with general possibilities for a star birth, death, and life events. We have
already defined how to describe a specific system and its specific life-life and birth/death/events.

As you can see we can now make some pretty complex general and specific statements, and they
are pretty efficient (do not consume a lot of space or writing). Uscript is getting closer and closer to
what we consider a language rather than just a notation system.

Uscript Life
I am going to “skip” chemistry and biology. I love the fields and could go into them in depth, but I
will leave them for extended versions and information databases. Why? Because we don’t want to
assume the life is biochemical. We know they exist in the universe, we are assuming they exist on a
scale and dimension similar to ours (They can perceive at least our 3 dimensions+time and they are
not entities larger than the universe or smaller than atoms, not saying those are impossible, just
outside the defined scope of Uscript). They could be biochemical, or be more similar to what we
would call machines, or just exist in wildly different environments with wildly different biologies
and chemistries.

We need to define life from the ground up to be all inclusive. Luckily we don’t need to create a
word “life” because our word “life” is defined in a very “earth evolution centric way”. Is a virus
alive? Is a prion? What about RNA? According to the standard definition, NO! Because, in simple
terms, they don’t reproduce internally, but this could easily rule out other potential forms of life. So
where do we start? I think the best characteristics to use are homeostasis and reproduction.

Line 1: entropy=(entropy > 0) =increasing entropy *entropy can only occur if time passes
 “untropy”=(entropy < 0) = increasing order *“untropy” new word I created, entropy antonym ;)
 (entropy=0) =subs (arrow of time) *time flows but no reference to entropy

Line 2:if(system-a sub (particle interaction) AND absorbs AND entropy approx 0)
then system-a is a homeostasis system

Line 3:if(system-a sub (particle interaction) AND it absorbs AND its entropy < 0)
then system-a is an “untropy system” *a system of increasing/growing order

Line 4:if(system-a sub (particle interaction) AND it absorbs AND its entropy > 0)
then system-a is an “entropy system” *a system of decreasing/diminishing order

*notice I use approx equal to zero. We want to include life in this category, and life is not a perfectly stable
system, it needs to adapt in some form or another, and may die over longer time scales(like us).

Ok. So we have a Uscript version of homeostasis, and something like formation/growth(untropy)
and decay/death(entropy). Untropy vs. homeostasis is a tricky line, because in most examples I can
think of we are either decaying, or increasing in overall order but also increasing in mass and
volume. There are definitely moments/periods where our potential energy per gram or per cubic cm
increases so I suppose these are our “moments of untropy”.

So are there true “living untropy systems”? Plants definitely experience untropy when they convert
massless photons into higher energy state molecules. I think at the very least we could look at living
systems and find “moments/periods of untropy”. Regardless, we have the term available and it can
be useful for non-living systems too (a growing black hole is an untropy system) and it can also be
useful when we soon get to metaphors.

Next we have reproduction. We can already define a growing system, It either gets bigger, or it’s
sub-system count increases or both. eg. growth for us is an increase in cell size or cell count.

I suppose one can imagine a “non-gowing“ being/entity whose behavior we would classify as
“alive”, but in order for it to never have experienced a growth cycle that would imply it always
existed which would be a deity/god. I suppose you could argue it just randomly formed, all at once,
or “it was not alive until its final particle came into place”, but that is just an argument on arbitrary
definitions of system classification. The same argument can be made about any life, eg. At what
point does an embryo become an animal?

Reproduction on earth takes many forms, it’s actually very hard to classify them and define
categories. Reproduction is so vital to life that it has adapted in many ways and comes in many
forms that most people can’t even imagine. I am not going to wrestle with this area for now. I like
biochemistry but biology is not one of my strong suits, and secondly it is hard enough to define
reproduction categories that are earth-centric and it could easily end up being dozens of pages
long(in short, the details of reproduction are too much for this introduction document).

Here is a simple approach to broadly define reproduction without detailed subcategories for now.

First line : growth sub(expansion) growth sub(explosion) growth sub(reverse time implosion)
 shrink sub(contraction) shrink sub(implosion) shrink sub(reverse time explosion)

*here we create general symbols for growth/increase and shrink/decrease
Middle section : A time-line that shows a system dividing into 2 new systems with a statement

Statement : if((sys-b ≈ sys-a) AND (sys-c ≈ sys-a)){ b-state is a subset of reproduction }
*if a system divides into 2 systems that are approximately the same as the first it is reproduction

Bottom section : A time-line of a system emitting/ejecting a system
Statement : if((sys-b growth) possibility(sys-b ≈ sys-a)){b-state is a subset of reproduction}

*this covers things like eggs, birth of babies, budding, regeneration, fragmentation, etc..

This is a VERY general definition, it can be refined but I intentionally made it a very broad
definition. We could try creating broad sub-categories, but it’s quite difficult to draw arbitrary
categories here and seem too earth-centric. I will leave this for future development.

I used the growth symbol alone, we defined the sub-symbols to default as volume, but have not defined a default for
growth. If you don’t like this you can define something specific, but it doesn't matter because we use possibility. By
using possibility it is true for most things, eg “sys-b time possibility” or “sys-b absorb energy possibility” or “sys-b
future state possibility”. We don’t require that it DOES become a similar/copy system of system-a, just that it CAN. I
used growth because it is smaller than system-a, thats part of the “radiate/emit” symbol (There are exceptions eg. math,
but otherwise the “wave” side of the symbol is meant to be symbolic of smaller/energy vs the other side larger/matter)

Has/Contains, Minimum & Maximum
Here we add a few more array handling functions and create terms for “contains/has”, minimum
value, and maximum value. We will also use this opportunity to flesh out our procedural
programming a little more. These will be needed in the next sections.

Top row section:
Left : (return 1) = 1 (a=5; return a;)=5
Middle : (a={3,5,12};return a[1])=12
Right : (a=1; return a; a=5; return a;)=(a=1;return a;)=1

Second row section :
foreach(a as b){c} = (d=1; while(d<count(a)) { b=a[d]; c; d=d+1;})
a contains(b) = (c=0; foreach(a as d){if(d==b){c=c+1;}} return c;}

Third row section :
max(a)=max(a)=(b=a[1]; foreach(a as c){ if(c>b){b=c;}} return b;)
min(a)=min(a)=(b=a[1]; foreach(a as c) { if(c<b){b=c;}} return b;)

This now give us several new useful terms
Return : This can be abstracted to situations where a complex system returns

information/values/reports to its parent system

Foreach : Can be abstracted to describe process that check through/analyze/sort things

Contains : Until now we have been accomplishing this using the subset symbol. I feel the
subset symbols is being overused, its used for declaring things as subsets, describing qualities,
evaluating, comparing, etc.. I think its about time there was a separate way to explicitly say “a
contains x b’s”. It returns 0 if there are none, which will evaluate to FALSE, and the count of
matches which will evaluate to TRUE if there are any. We could also try defining this with
something along the lines of “count (subset(element=x))”.

Min/Max : Very useful concepts, also useful for talking about ranges, limits, etc.. .

*Remember, Uscript starts array count at 1 not 0. I know this irks most programmers, me too, but the 0 symbol doesn’t
work well as a combination symbol because its reserved for so many other uses.

**the return symbol is a combination of “superset” and “radiate”. radiate into the superset.

The further we get the more choice we have in how we define a term. Terms could be defined in
various ways and each way can have tons of different possible expressions. Our vocabulary is
growing larger and if we abstract terms it increases our available choices even more.

Subspace, Subsystems, Environments and Neighbors
To discuss life we will need to be able to discuss environments. All life depends on an environment
to supply it with what it needs to survive. We also need to be able to discuss the internal space and
workings of an organism.

For this we will use 4 main concepts.
Subspace – A space within a system or space
Subsystem – A system within a subspace
Environments – The space surrounding/containing a system or space
Neighbors – A system within an environment

Subspace and subsystem are easy, but environment and neighbors are a bit arbitrary, technically the
entire universe is my environment and everything within it is my neighbor, but this is a rather
useless definition, so where do we draw the line? Interaction is the key, potential interaction defines
environment while potential bilateral interaction defines neighbors. This still means there are
arbitrary factors based on interaction speed and system lifetime. My maximum environment is a
sphere radius “speed of light * my lifetime” and my maximum neighbor distance is “(speed of light
* my lifetime) / 2. To apply these concepts usefully we still need to add arbitrary thresholds of
course, and that must be done on a case by case basis.

First line : interaction sub(send-interaction) interaction sub(receive-interaction)
interaction sub(bilateral-interaction)

Time-line of bilateral interaction:
Statements in subsection:

sys-a send-interaction sys-b sub(a state-until b)
sys-a receive-interaction sys-b sub(c state-until d)
sys-a bilateral-interaction sys-b sub(a state-until d)

*si=send-interaction ri=receive-interaction
Third line : bilateral interaction after bilateral interaction = 2 bilateral interactions
Fourth line : si after si after ri after ri sub(count(bilateral-interaction) = 2)
Fifth line : si after si after ri after si sub(count(bilateral-interaction) = 3/2)

Above we define sub types of interaction, “X send-interaction Y “ means X emits and Y absorbs, “X
receive-interaction” means Y emits and X absorbs, and a bilateral interaction is bilateral sequence of
interactions. For bilateral interaction the count only increases by 0.5 every time an interaction
switches directions.

If you are particularly analytical and observant you may be wondering “that definition doesn’t cover
the case where interactions of different direction overlap in time”. For example, I could be receiving
a constant stream of photons from the sun, and reflecting a constant stream of photons back, so let’s
suppose I am being hit by 1 photon every second and emitting one photon every second, does that
mean the counter increases every second? The answer is NO. Bilateral interactions are counted
based on completed interactions only, and this detail is cleared up in these next statements.

First line : a not-contain(b) = not(a contain(b)) sys-a sub(sys-b) = sys-a subsystem sys-b
sys-a environment -infinity = universe

Second line : time sub(sys-a environment a) =
universe sub(distance sys-a < (time until sys-a end)sub(time-line/(0x10^a)))

*notice we used the space-between measure instead of distance between center of mass
Third line : if not(sys-a env a) contains(sys-b)

then(max (possibility(sys-a bilateral interaction sys-b)) < ((0x10^a)/2))
Fourth line : sys-a subspace = sys-a sub(space) not(sys-a subspace volume > sys-a volume)

sys-a environment = sys-a environment 0
(sys-a neighborhood a)sub(volume) = (sys-a environment (a/2))sub(volume)

Fifth line : (sys-a env=a sys-a env contains(sys-b) sys-a neighborhood not-contain(sys-b))
=((sys-a env a) contains(sys-b) (sys-a neighborhood a) not-contains(sys-b))

The first line gives us a symbols for doesn’t-contain, subsystem and environment.

The second line gives us a way of restricting the size of the environment. An environment size of
“0” means “a sphere the size of the speed of light * the remaining lifetime of the system, which
means “environment 0 is everything in the universe capable of interacting with that system during
it’s lifetime, environment 1 is a sphere 1/0x10 the size, environment 2 is 1/0x100 the size, etc..

The third line says “the maximum number of bilateral interactions with something not within an
environment is the (range of the speed of light/the range of the environment)/2” This clarifies that
bilateral interactions require twice the distance and time to occur than single interactions and that
each directional interaction must complete before the switch in direction interaction is counted.

The fourth line defines subspace, a term that will need some clarification later as its meaning and
usage here is not extremely clear, it also sets the default value for environment as 0 and clarifies that
the neighborhood has half the range as the environment.

The fifth lines says we can set a system sub variable named environment to establish a new default
environment size.

The environment vs. neighborhood is a bit arbitrary, they are just 2 types of of environment, but I
think it is a significant distinction. A range for things you could influence or be influenced by, and a
range for things you could communicate with.

All, None, and Some
Just adding a few more terms. We already have ways of expressing all, none and some using
procedural logic, but these are rather important and frequently used terms so lets make some more
efficient notation for them.

Row 1: all(ab)= (c=1; foreach(a as d){c=c&&(db);}return c;) = eval(count(eval(ab)) = count(a))
Row 2: none(ab)= (c=1;foreach(a as d){c=c&&!(db);}return c;) = eval(count(eval(ab)) = 0)
Row 3: some(ab)= (foreach(a as d){if(db){return 1;}}return 0;) = eval(count(eval(ab)) > 0)
Row 4: some-not(ab)=(foreach(a as d){if(!db){return 1;}}return 0;)=eval(count(eval(ab))<count(a))
Right side : (a=array(3,5,12)

all(a>1)=TRUE all(a>4)=FALSE some(a>4)=TRUE some-not(a>4)=TRUE
some-not(a>1)=FLASE none(a=5)=FLASE none(a=2)=TRUE)

These definitions give use clearly defined simple and efficient ways to use all/none/some.

The Expressions we used not only define the terms, but also clarifiy some procedural and array
handling methods. Most importantly the third expression in each row shows a simple way of
running evaluations on each element and counting the results.

Technically out “some” means “at least 1”. If you want to say “at least x” then just define that with
expressions using count or contains.

These definitions don’t just allow us to save space, they also give use very useful terms that we can
abstract later.

Conversion & Consumption
Another key trait of living systems is that they eat. Living systems need to fight off entropy so they
must consume energy. All examples of life I know of absorb energy in some form and convert it
into other forms for usage. Plants absorb light and convert it into carbohydrates, all life converts
carbohydrates and other chemical compounds into more useful forms like ATP. It is not impossible
to imagine a life form that does not need to convert the energy it absorbs from it’s environment, but
this can just be called pure absorption which we already have a term form.

In Uscript we will have 3 main concepts
Absorption – simply absorbing something like energy or matter.
Conversion – absorbing one thing and excreting another
Consumption – absorbing + converting + retaining a portion in some form within the system

These concepts also need to be able to be combined to produce more complex processes.

Top line : (if(sys absorb a) then{next sys emit b}) = sys(absorb a emit b) = sys(absorb a emit b) = =
sys(a convert b) = sys a convert b

Second line : (a=array(b,c)) (if(sys absorb a) then{next sys emit b})=sys a retain c emit b
Third line : (if(sys absorb a) then{next subsys a convert b next subsys b convert c})

= sys a convert b convert-retain c
Fourth line : (if(sys absorb a) then{next subsys a convert b next subsys b convert c next sys emit c})

= sys a convert b convert c
Fifth line : (if(sys absorb a)then{next subsys a convert b&c next sys emit c})

=sys a convert (retain c emit b)

These will allow us to express some of the more complex aspects of systems without resorting to
time-lines filled with various labeled particles. We definitely could just use time-lines, pretty much
everything can be explained with graphs/illustrations/time-lines, but with Uscript we are trying to
build tools that operate in a more linguistic fashion, and this is a good practice/test.

My English descriptions of these complex conversion/consumption symbols is a bit poor, it’s hard
to match the more graphical nature of the symbols with simple English translations in these
examples.

You can also create nested conversion/consumption by placing entire conversion/consumption
symbols within in each other. But I wont go into that here, these tools will suffice for our immediate
needs. Also note, next just means “a later state” it doesn’t have to be immediately afterwards.

Models
Models are descriptions that can be used to understand and predict something, they are usually
mathematical description of systems. We are already using models throughout this document. For
many higher level concepts, such as intelligence, we need to apply the concept of model more
abstractly so we will define a term for it.

The model symbol is just an equals symbol inside a box(meant to represent brackets) which are 2 of
the most important elements frequently used in models.

I won’t go through each example given, but here the top 3 rows show 9 examples of models,
everything from a simple category definitions and math equations to logical operation to physics
models. I think this is enough to get across the meaning that “a model is any form of definition,
logic, categorization, formula, etc..”

The bottom line shows a subcategory of model, the model symbols combined with the time symbol,
we will get into this category later pehaps, suffice to say for now it means “models that incorporate
a time element” which will be defined as models that can predict the future of infer the past. We
also introduce a simple symbol for “time point variable” and “model variable” using the same
structure we have used many times already of combining the symbol type with a variable.

Evaluating the quality of a model is a tricky business which we will wont get into here.

For evaluating model quality first we would need to define scope and range of the model, we need
to discuss accuracy, and we also need to deal with which variables are input and which are outputs.
All of these elements are basically dimensions. We need to define tolerance all possible
combinations of all possibilities are valid applications of a model, etc..

For now, this can be dealt with by incorporating these elements directly into the model.
eg. Newtons equation for gravity is valid on objects of certain size and mass, moving at certain
speeds, at certain distances, in certain external gravitational fields. Even Einsteins field equations
for gravity don’t apply at the quantum level.

To handle this a model must “return wave/unknown” if it wishes to not be evaluated outside of it’s
scope. This is accomplished by adding “if(x not in scope){return wave;}” statements to the top of a
model. Without these it will be assumed the model is meant to accurate across all scopes and ranges
for all possible variables as output.

A model can also involve statement of tolerance rather than an equality
eg “x > (b^c)-1 && x < (b^c)+1” giving us a tolerance of +-1

This does not mean it is necessary to add all these qualifiers to every model in every case. But if
you want to rigorously evaluate and document the quality of a model, this would be needed
(regardless whether written in Uscript or any other language).

You can also require variables by adding “if(x==wave){return wave;}” to require that a variable be
provided as input.

These aspects will be skipped in this document, but the logic laid out above is pretty straightforward
and you already have all the tools should you wish to do it. For now I will be discussing models in
more general and abstract terms and will avoid “evaluating model quality”.

Next we will apply models and define how they respond under various inputs.

Top section : (model-a = (a=b*2) model-a (b=3) convert (a=6) model-a (a=6) convert (b=2))
Second section : (model-a = (a=b*2) model-a sub(constant) ={2} model-a sub(var) = {a,b})
Third section : (model-a = (a=b*2; b=c+d; e=d+a)

model-a (b=3) convert {(a=6), (c=unknown), (d=unknown),(e=unknown)}
model-a {(c=8),(b=3)} convert {(a=6), (c=-5), (e=1)})

Bottom section : (model-a = (a=b*2) model-a input (b=3) = (a=6))

The top section shows us how to display a model operating(converting inputs into outputs). The convert symbol was
designed for physical systems, here we abstract it to models and variables. This notation is useful when you want to
describe a model’s behavior without defining the model. We do define it here, but we could choose not to define the
model and only describe its input and output behavior, this is good when we want to discuss things abstractly or
describe a model have are searching for or have not yet defined.

The second section just shows how to access arrays of the constants and variables in a model. The variables array is
particularly useful if you want to discuss possible inputs/outputs or different ways to execute the model.

The third section shows how models take and return arrays when inputs/outputs are more than 1. If you are a
programmer who hates duck-typing, then just define it so even single element returns are an array like I did with the
second section.

The bottom section shows how to execute a model so the result can be incorporated into larger equations and
expressions.

Cause, Effect, and Change
Cause and effect are long overdue, so let’s finally create those terms.

Top line : (state time+ != state)sub-of change (state time+ = state)sub-of no-change
 (future-state)sub-of change (cause)sub-of past (effect)sub-of future

(inevitable-result)sub-of effect (only-possible-cause)sub-of cause
Second section: general time-line, with a subsection of statements :

if(sys-a b state = sys-a d state) then{sys-a c change}
if(sys-a b state != sys-a d state) then{sys-a c no-change}

Third section :(eval(b=c)=TRUE next if(a){b=d;} next eval(b=c) FALSE) sub(a caused (b!=c))
Fourth section :

Left : (a because b) = (b cause a)
(a must-be-because b) sub-of (a because b)
(a must-cause b) sub-of (a cause b)

Right : A time-line of neutron decay with sub-statements :
(proton absorb energy) caused (proton emit W+boson)
proton change because (proton absorb energy)
(proton emit W+boson) caused by weak force
(a state = proton) is-an unknown

Second last line :
((a next b) AND a state sub(next-state count(possibility)=1)) sub-of (a must-cause b)
(a state sub(next-state all(possibility contain(b)))) sub-of (a must-cause b)

Last line :
((a before b) AND a state sub(previous-state count(possibility)=1)) sub-of(a must-be-because b)
(a state sub(previous-state all(possibility contain(b)))) sub-of (a must-be-because b)

This gives us plenty of very useful terms, we can use these to discuss change or lack of
change/stability, cause and effect, and easily declare that a certain result must imply a certain cause,
or a certain event must cause a certain result.

Uscript Intelligence
We will define intelligence as a combination of the qualities of pro-activeness, awareness,
consciousness, and study.

Action, Reaction, Proactive & Reactive
In physics there is no real concept “a proactive action” vs. “a reactive reaction” because from a
physics perspective the universe is deterministic (I suppose we can get into arguments about this
with quantum mechanics… me I’m fond of a pilot wave theory interpretation of QM which
preserves determinism to help me avoid these debates).

Physics only really discusses the concept of action as part of an “action reaction pair”, if you look at
a single event there was a cause and a effect, an action and a reaction, but that action is itself a
reaction to a previous action, and so on until the big bang(that’s just as far as we can infer). The
same rules apply for conscious life. My actions are all reactions, pure pro-activeness is non existent
but we can define a grading system.

We will define all events as “actions”, a “pure reaction” is one where “the environment interacts
with a system and there are no internal interactions before the system reacts with the environment”.
Each reaction can also be called an “action”, actions have an “action value” which is 1 + the
number of internal interactions that chained between external input action and the system’s reaction
into the environment”
*For now I don’t discuss the complexity of reaction chain branching, which branch to use or their relative significance

Line 1 : (action) sub-of directional-interaction sub(reaction)
(sys outgoing-interaction caused by sys subspace) = sys action
(sys outgoing-interaction caused by environment) = sys reaction

Line 2 : reaction = action sub(count(interaction)=1)
(sys reaction caused-by sys sub(interaction) caused-by sys interact environment)

= sys action sub(count(interaction)=2)
Line 3 : (sys reaction caused-by sys sub(interaction) caused-by sys sub(interaction) caused-by

sys interact environment) = sys action sub(count(interaction)=2)
Line 4 : sys time-period sub(count(action) / sum(action sub(count(interaction))))

=sys time-period reactiveness
sys time-period pro-activeness = 1-(sys time-period reactiveness)

So our definitions are :
“actions and reaction are directional interactions”
“internal forces cause action, external forces reactions”
“all reactions are actions with ‘interaction count 1’ ”
“’interaction count’ is the length of the chain of internal internal interactions +1”
“reactiveness is number of actions / sum of their interaction count” (is between 0 and 1)
“pro-activeness is 1 - reactiveness”

Mind, Observation & Awareness
We will define the concept of “mind” as “the subsystem that contains models of the environment”.
We have not required that it only contain models of the environment, so a mind can still be aware of
internal systems, but if it is not at all aware of it’s environment or anything outside the system, we
don’t call it a mind.

Awareness of X is the simple state of having a model that contains X. The validity of the model is
not addressed here, that is a longer discussion for another day. Degrees or accuracy of awareness
also requires a large amount of definition and is not necessary for now so it will be left out of this
first version of Uscript.

Observing X just means receiving an interaction from X caused awareness of X. If you already had
a model of X it is still an observation because at the very least you become aware that X is still true,
or X still exists, or X has not changed/moved, etc…

Below we define model broadly and include time-point sub-values to clarify that even the state of
something at a time can be a model, this basically means that “information is a type of model”.

Top section : We create a function that checks if 2 arrays share any elements.
Second line : model sub(contains(a)) = model(a) model(a) sub(time-a sub(a=b))

model(time-a) sub(time-a sub(a=b))
Third line : model (speed) sub(distance / time = speed) model(time) sub(distance / time /speed)

 model(distance) sub (distance / time = speed)
Fourth line : (model-a share-element environment) = model-a sub (model(environment))

model(environment) = model(environment)
system sub(mind) = system mind

Fifth line : (sys subsystem contains model of environment) sub((subsystem) sub-of sys-mind)
 (sys mind contains a) = sys aware of a

Sixth line: ((sys receive directional interaction from a) causes sys aware of a) = sys observe a
 (sys mind not-contain a) = sys unaware of a

Conscious & Subconscious
Models in the mind can be conscious or subconscious, this just refers to whether the mind is itself
aware of the model. If the mind contains a model, but the mind is not aware it contains the model
then it is a subconscious model, if it is aware of it then it’s a conscious model.

Overall consciousness of a mind will be generalized as “number of conscious models divided by
number of subconscious models”. I realize this is a great oversimplification, but any better value for
this requires assigning some kind of formula for evaluating “model value and significance” (a rabbit
hole I really don’t want to dive down in this intro document) ,so it’s the best we have for now. I
think it’s plausible to argue “significant models can be broken into more smaller models or can
produce more derivative models than less significant models” so it’s not too bad as as an abstracted
approach.

Top line : mind aware (mind contains(model-a)) = conscious-mind sub (model-a)
Second line : mind not-aware (mind contains (model-a)) = subconscious-mind sub(model-a)
Third line : mind consciousness = conscious-mind / (conscious-mind + subconscious-mind)

Attraction
In physics attraction is always experienced by all participants, if A is attracted to B then B is also
attracted to A. In more complex systems we often want to discuss “one sided attraction” (insert joke
about relationships / love here).

Line 1 : (bond) sub-of attraction a attraction b = (a attracted-by b) AND (a attracts b)
Line 2 : a speed-towards b = sin((a line b) angle a sub(max(speed line))) * a speed
Line 3 : (a interact b causes (a speed-towards b) increase) sub-of (a attracted-by b)
Line 4 : (a aware of b causes (a speed-towards b) increase) sub-of (a attracted-by b)

Desires, Urges, Plans, Predictions & Probability
We will of course need to talk about the wants of minds and how they get it. We can break these
into several easily and clearly defined categories.

Desires – Conscious wants
Urges – Subconscious wants
Plans – Models for future action

To describe these methods well we first define the concept of predictions and probability.
Probability can be messy to define, but physics gives us a great tool for doing this, particle half-life.

First line : (0xCA10F57059 time-unit period) sub(neutron sub(probability (neutron decay)=1/2))
Second line : (0x19421EAE0B2 time-unit period) sub(neutron sub(probability (neutron decay)=3/4))

*”probability of neutron decay in 611 seconds=1/2, probability of neutron decay in 1222 seconds=3/4”
Third line : alternate symbol for action how to create action-variables

model-a predict a = model-a state convert next contains (a)
Fourth line : conscious-mind desire a =

(conscious-mind predict (action-a causes (probability a grow)))
causes (probability (conscious mind causes action-a) grow)

Fourth line : subconscious-mind urge a =
(subconscious-mind predict (action-a causes (probability a grow)))
causes (probability (subconscious mind causes action-a) grow)

Fifth line : a has plan = a contains (model contains(if(b){a causes action-a}))

Notice that urges and desires are only dependent on whether the conscious mind or subconscious
mind is working to cause the result. Every urge or desire increases the probability of the action
occurring. When you feel an urge or desire the probability that you perform an action that you
predict will provide the desired result increases.

Plans are just conditional models for future action, even if the condition is just “if now-time = x”

Learning, Forgetting & The Scientific Method
This section is drastically oversimplified. I am not entirely happy with it myself, we only define
forgetting a model, we don’t discuss knowing models are incorrect or applying and using a model
vs. knowing a model, and we greatly oversimplify the scientific method. These oversimplifications
and oversights are just because to deal with the issues properly requires a large volume of terms and
long definitions. These matters can be addressed in a later add-on. The complexities of models can
easily be an entire document on its own.

For now learning is whenever a mind gains a new model, and forgetting is when a mind loses a
model (remember a model can also be pure information or data).

Evaluating a model and the scientific method are defined very abstractly for now. The main purpose
of this document is to establish a base vocabulary for some very basic linguistic expression.

Here we also create a few new terms for “increases probability of” and “repulsion”.

Top line : (a causes (probability a = 1)) = a causes b
 (a causes (probability b increase) = a increases probability of b

increases probability of = increases probability of *just an alternate form of the symbol
Second section : a basic time-line with points and period labeled :

Expressions in subset :
(time-a sub(mind not-contain (a) AND time-b sub(mind contains(a)) = period-a sub(mind learns a))
(time-a sub(mind contains (a) AND time-b sub(mind not-contain(a)) = period-a sub(mind forgets a))

Third line : electric charge 1 attract electric charge -1 electric charge 1 repel electric charge 1
 repel = invert attract repelled-by = invert attracted-to repels = invert attracts

Fourth line : evaluate-model model = eval(model input environment = observation)
scientific-method model = ((attracted to evaluate model))

AND if-not(evaluate-model){increase possibility forget model})

I do apologize for the superficiality of these definitions, but I want to restrict this document to a
reasonable length. These grant just the bare minimum. For more formal description of these terms
or other not included terms you can just create your own definitions or use long form expressions eg
curiosity = “mind attracted to causing actions that cause observations that increase probability of
learning”, stubbornness = “mind repelled from learning models that predict another model is
wrong”, untestable-model “model that is impossible to test and produces no predictions”.

Communication
Communication is an important type of interaction. Please remember that as with most high level
concepts in Uscript, the English words we use to refer to our concepts are just “ID” values, the
actual term is defined by the Uscript definition, not the English word.

Packet – something sent that is intended to be received.
Signal – a packet intended to cause a reaction
Message – a signal meant to convey information (the intended reaction is learning)

Line 1 : ((sys-a emit a) AND ((sys-a mind) wants (a absorb b))) = sys-a send(a) to b
Line 2 : ((sys-a send(a) to sys-b) AND ((sys-a mind) wants (sys-b absorb a causes sys-b action-a)))

= sys-a signal(a | do | action-a) to sys-b
Line 3:(sys-a signal(model-a | do | if(sys-b mind not-aware model-a){sys-b mind learn model-a}) to sys-b))

= sys-a message (model-a) to sys-b
Line 4 : sys-a send(a) to b = sys-a send array((a)(b))

 sys-a send-packet-to a = sys-a send ((undefined)(a))
Line 5 : sys-a send-message(undefined) to sys-b = sys-a send-message-to sys-b

 ((sys-a send-msg-to sys-b) causes (sys-a gets-sent-msg-by sys-b)) sub-of bilateral-comm

There is still plenty that can be added in this area like encoding systems(languages), mediums
(sound, EM signal, writing), databases and storage formats, etc… Here we have just enough for
some rudimentary conversation, this is another section that could easily become an entire extended
database on its own.

All targeted system to system interaction can be classified easily into one of these 3. Everything is
a packet, some packets are signals, and some signals are messages.

A broadcast is just when the intended receiver is “any of a group”. We can also easily describe
intercepting/receiving packets not intended for others.

If a system absorbs something that was was not intended for anyone, then it is not a packet, signal
or message, if the system learns something from it that was just learning/inferring, communication
requires conscious or subconscious intent in Uscript.

Pronouns, Instructions, and Questions
We want this to allow linguistic expression, and pronouns are important, at least me/us/you/we are.
Singular and plural are also important. He/she/they however is not important, unlike “me” or “you”
I can’t just say “he/she” without there first being a context for who he is, since we would need to
define that first eg. “system-a = he/she” or “context(he/she)=system-a”, we might as well just call it
“system-a” and skip all that mess.

There is also no gender, of course, because gender is a human construct, not universal, even on
earth many life forms have no gender. Sexual reproduction can be defined, but is not necessary so I
have omitted it for now. The tools needed to describe it are all available should one wish to do so.

Below we also create a “can/is able to” symbol as well as some symbols for “system with a mind”,
system without a mind” and “system capable of composing/sending messages”. A system that is
capable of sending a message must form a message which implies it is capable of imagining other
minds and can image future actions, so this is a system with high levels of consciousness.

First line : (future-state possible(action-a)) = can action-a
system-with-a-mind = system contains(mind)
system-without-a-mind = system not-contains(mind)
system can send-message = system-capable-of-language

Second line : (sys-a send-msg (msg-a) to sys-b) sub ((you = sys-b) sub-of msg-a sub (me = sys-a))
Third line : (sys-a send-msg(I want (you send (energy) to me)) to sys-b)

= (sys-a send-msg(sys-a want (sys-b send (energy) to sys-a)) to sys-b)
Fourth line : ((sys-a sys-b)) sub-of group-of-systems sub (sys-a sys-b sys-c)

group sub (count(systems) > 1) you sub (count (systems) = 1)
me sub (count (systems) = 1)

Fifth line ((sys-a sys-b) send-msg(msg-a) to sys-c) sub (msg-a sub(we = (sys-a sys-b)))
(sys-a send-msg(msg-a) to (sys-b sys-c)) sub (msg-a sub(plural-you = (sys-b sys-c)))

Sixth line : instruction (action-a) = (I want you action-a)
(a + b =c) sub(question(a+b) = instruction (send-message (c) to me))

With Question we didn’t actually specify that we want them to calculate the answer, just that we want them to send us
the answer.

Post-read FAQ

Q:We don't know neutrino masses accurately.
A:Yes, I am aware. I had not defined less than or greater than at that time so I just used equals to.
The definition of < and > should be moved up to the top of the doc in the first maths section and
neutrino masses should be mass<x not mass=x.

Q:Why no calculus? Why no field theory? Etc..
A:Because most adults have completely forgotten calculus. I don’t want to drown readers in math
that will turn them off. It is very easy to add it, but I was able to introduce more than enough
physics concepts and define everything clearly without it. A secondary goal of Uscript is to inspire
interest in science, so I try make it appeal to as broad an audience as possible and introduce
interesting physics concepts in ways that don’t overwhelm the average reader.

Q:Why does your style and structure change and vary throughout the document.
A:Firstly because I had notebooks of scribbles before writing this document but only in writing it
did I formalize and standardize it properly. Secondly because there are many different ways of
expressing things in Uscript and I want to give examples of various possible styles.

Q: I found a contradiction in Uscript structure/terms!! is this an error?
A:Possibly. I am far from perfect, but it’s also possible you skipped something and/or didn’t
properly understand the definition. In higher levels later in the document I am assuming you
understand the structures and terms laid out in the previous sections. Make sure you are reading the
graphics, not the English text, the English text is just an aid, not the definition.

Q:May I use this in my project
A:Yes. You surely may. it’s free for any use, even commercial. See next page.

Q:I found an error, how can I report it

A:I love bug reports. Send it to me at bugs@dscript.org

Q:Why no co-ordinates systems?
A:Because I didn’t need them yet. Co-ordinates systems are used for specific descriptions and
advanced maths, they require a fair amount of definitions to build them up but I was able to live
without them so far so I didn’t bother. They are of course needed eventually and can be added when
desired. A few 1D and 2D examples are all you need to establish the structure for higher
dimensional coordinate systems.

Q:What about space coordinates for our planet or astronomical bodies.
A:This is a complicated problem. There are no constant absolute reference points in the observable
universe. The best we have come up with is using pulsars based on their frequency and distance, but
even this has limits because over long enough period those pulsars will move, merge, die and their
frequency will change. So there is no permanent universal solution available.

Q: Particle spin is not the same angular momentum, it’s just a name given to a property of particles!
A:True, but the mathematical model for spin resembles the model for a spinning body, that is why
they gave it that name. It doesn’t matter if they are different things, the models are similar enough
that it makes a good abstraction and analogy.

mailto:bugs@dscript.org

Resources / Links

Free for all to use, & modify
Uscript and all the graphics in the document are Creative commons.
Free to use in any project, commercial or non-commercial.
No Royalty, Fee, etc..

Here is a zip with the svg files (messy but it should all be there)
http://www.dscript.org/uscript_svg.zip

If you enjoy this script you may enjoy some of my other scripts.

Dscript 2D writing system : http://dscript.org/dscript.pdf
Dscript is a 2D writing system, it allows words to be writen as strings and characters that are

still legible. It is not ideal for computer use, and in fact is very resistant to OCR (computer Optical
Character Recognition).

Cscript Computer-Human Bi-freindly Script : http://dscript.org/cscript.pdf
Cscript is designed to be easy to OCR, easy to read and write, and have several layers of

compression to allow for spatially dense writing.

Escript Electronic script for Low-res pixel display Script : http://dscript.org/ e script.pdf
Escript is optimized for both handwriting and low resolution pixel display.

Chemical Calligraphy Basics : http://dscript.org/chem.pdf
Chemical Calligraphy Advanced / Artistic : http://dscript.org/chem2.pdf

Chemical calligraphy is a derivative of Dscript. It allows chemical structures to be drawn as
symbols. The basics pdf introduces the basic principles, and the advanced pdf demonstrates how to
use it as an artistic and mnemonic device to help when learning chemical structures and organic
chemistry.

WireScript : http://dscript.org/wirescript.pdf
WireScript allows text to be written with wires in 2D and 3D. WireScript turns text into

physical 3D art.

NailScript : http://dscript.org/nailscript.pdf
NailScript is a way to write text with a hammer and nails. By hammering nails into wood or

other materials very durable and long lasting text can be written.

More Technology-Art and Constructed Scripts at http://www.dscript.org

This work is licensed under a Creative Commons Attribution 4.0 International License.
Based on work by Matthew DeBlock at http://dscript.org

vasten@dscript.org

http://dscript.org/
http://creativecommons.org/licenses/by/4.0/
http://www.dscript.org/
http://dscript.org/nailscript.pdf
http://dscript.org/wirescript.pdf
http://dscript.org/chem2.pdf
http://dscript.org/chem.pdf
http://dscript.org/escript.pdf
http://dscript.org/escript.pdf
http://dscript.org/escript.pdf
http://dscript.org/cscript.pdf
http://dscript.org/dscript.pdf
http://www.dscript.org/uscript_svg.zip
http://creativecommons.org/licenses/by/4.0/

